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Preface

AiThe Seventeenth Symposium on the Interface of Computer Sciences and Statistics was held in the
Radisson Plaza Hotel, Lexington, Kentucky on March 17-19, 1985. The conference was hosted by the
University of Kentucky. The format for the Symposium was very imilar to the preceding symposia in
the series. Dr. John Nash presented the keynote address on Monday morning. This was followed by two
sets of three parallel sessions and workshops. On Tuesday there were three sets of three parallel
sessions.

j4
The sessions encompassed a broad range of topics. A number of sessions dealt with computational

methods for traditional statistical areas. These included Time Series, Nonlinear Models, Repeated
Measures Data Analysis, and Categorical Data Analysis. Some sessions were in the relatively new areas
of Statistics such as Artificial Intelligence, the Metadata of Computational Processes, Statistical
Computing Languages, and Statistical Workstations. There were also sessions in Numerical Methods,
Density Estimation, Teaching of Statistical Computing, Statistical and Mathematical Software and
Graphics. During one session the entire audience participated in a round table discussion on the "
Performance of Statisticians with Statistical Software. Written versions of nearly all these papers--
are in this volume.. A few papers were not included because of prior copyright elsewhere or because
the manuscript was not received from the authors.

A large number/of people helped make the Seventeenth Symposium a big success. The organizing
committee was Gary Anderson, Kenneth Berk, Thomas J. Boardman, Daniel B. Carr, William F. Eddy, Alan
B. Forsythe, Richard J. Heiberger, Sally E. Howe, Robert E. Kass, William Kennedy, J. Richard Landis,
John Nash, Wesley L. Nicholson, Gordon Sande, Victor Solo and Constance L. Wood.

The office staff of the Department of Statistics, particularly Debra Arterburn and Brian Moses,
oversaw'the correspondence and bookkeeping, maintained a participant data base, assembled registration
packets, and manned the registration desk. Wimberly C. Royster, Dean of the Graduate School, M. A.
B.Wr, Dean of the College of Arts and Sciences, and Joseph M. Gani, Chairman of the Department of
Statistics, were all very supportive and made many resources of the University available for the
Symposium.

The facilities of the Radisson Plaza Hlotel were extremely nice. Thanks are extended to Cindy
Edwards and the rest of the Radisson staff. The Greater Lexington Convention and Vistors Bureau
welcomed participants at the airport, provided literature on things to do and places to cat, and also
helped with the registration.

The American Statistical Association was helpful in many ways. The efforts of Randall Spocri
and Jean Smith are particularly appreciated. Financial support for the Symposium came from the
Office of Naval Research and the University of Kentucky.

David M. AlIen
ce iLor Lexington
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Joh C. Na,. s
.5;J

Keynote Address "..j

TAKING IT WITH YOU -- PORTABLE ST rISTICAL COMPUTING /""

3ohn C. Nash

Faculty of Administration

University of Ottawa
Ottawa, Ontario. KIN 6N5

Canada

The subject of the presentation is the needed or wanted basis for

portable statistical computing -- the infrastructure statisticians
should have in order to carry out desired statistical computations

wherever they happen to be. Expanding on this theme, we will examine
what this basis implies for statistical software, the data sets we

examine, our own practices and "documentation" in the widest sense, the
computing hardware and software environments useful to support this

activity, and the standards needed to assist us in rendering our work

portable.

INTRODUCTION 41 tabulation and display mechanisms,

which are separated from methods to

As an active user and promoter of small reflect the necessary involvement of

computer solutions to both scientific machinery to effect the desired

and general administrative problems, outputs

and as scientific computing editor for

Byte magazine, I am clearly identified 5) the training, education and

with that proliferating technology research (self-education of the

rollectively called the "mlicrocomputer profession) to improve the overall

,evolution". However, the main technology of statistical computing as

nL-jective of this presentation does NOT practised.

5-incern microcomputers, e<c,.pt where
fhe gadgetry illustrates how obstacles Here we do not consider the analysis of

In pa-tability of statistical computing the results of computations as part of 2

,ise or may be overcome. In wrin Lin, the task at hand. However, this
t i -ia

t
<e our work as free F r , ties to distinction is blurred by the

.1.-njP aphic locations as pc-nci-le, I development of expert systems for

firmly believe that clear thinking and particular areas of statistics.
a wide perspective are fas lur e

important than brilliance in the design The basis of statistical computing

of a specific piece of hardware or listed above is in the doma'n of ideas.

software. Their realization is the work upon
which many of us labour. We endeavor

first to render the ideas in greater
STATISTICAL COMPUTING -- DEFINITIONS detail as generalized software --

computer programs, data files and
The basis of statistical romputing has, structures, books, research papers,

in my opinion, five facets: presentations, and designs of graphics. . -
Second, wie try to put the ideas into

I) methods for data analysis and the "hardware" forms -- disks and
statistical interpretation tapes, paper, integrated circuits,

audio/visuals. The juxtaposition of
2) data which is to be the subject of these software/hardware ideas is

analysis or computation deliberate, in that it focuses

attention on the possibility that there
3) documentation of what WE -- the may be several renderings of an idea in

statisticians -- do, that is, of different "languages" of expression and t

statistical practice different media of recording.

'4 %
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PORTABILITY particularly John Tukey. have presented
similar categorization lists. In

One can think of several routes to make transferring data from one set of

serious statistical computing portable. workers to another, we must take

Portable personal computers of account of some or all of the above

considerable power are now available, attributes. The task of developing a

some of which are battery powered and generalized format to accommodate these

need no AC power supply. The hardware, needs is not a trivial one. With Fred

however. needs to be complemented by Brown. a research assistant. I have

suitable software, and our data must be tried to develop such a format, but do

at hand in a useful form. Neither of not yet feel satisfied that it is ready

these lotter requirements is currently to publish.

satisfied, but the availability of the

machinery will entice developments

to appear over the next few years. TABULATION AND DISPLAY

To gain access to more powerful The aspects of tabulation and display

computers and software, and to larger which render them useful as tools for . "

data sets than may be accommodated on a statistical analysis are the very -6

portable microcomputer, we may look to features which are obstacles to

long-distance communication via portability. These can be summarized

terminals. Here the major limitations aS form, style and practice. Form will
are on the flexibility and convenience reflect the overall type of design

of data and command input and of followed. Cleveland ([I], [21, [31) has

displays or printed output. Few voice made a number of observations on form

or data communication facilities have which also reflect on style -- how the

sufficient capacity for detailed particular form it translated to the

graphics, either input or output. object seen. The impact of available

machinery on form and style chosen is

Despite their present limitations, obvious if one considers but one

various communications technologies example, the Chernoff face. This

available now do allow the sharing of display translates elements of a %
software and data sets, but only if the multivariate observation into features

program or data files are in some sense loosely resembling a human face. I

"standard* so that the recipient may have personally found it a useful

make use of them. To date, standards mechanism for demonstrating results but

for these statistical, as opposed to a rather poor exploratory data analysis

computational, constructs are not in tool. Nevertheless, if one wishes to

place. use "faces", then some way of drawing

them must be found.

Finally, even when the ideas behind a

particular statistical computation have Traditional approaches (Flury &

been transmitted between practitioners, Riedwyl, 1981) use plotters of various

we may observe that the results types. One can envisage bit-map £

obtained by the different workers are displays of modern microcomputers (e.g.

not the same. Ultimately, we need a Macintosh) being suitable, but

commonality of approach and methods at conventional computer terminals lack

a relatively detailed level. Simply the flexibility to 'draw" the necessary

specifyitq a method, for example linear graphs. An alternative approach is to

regression, is far from sufficient, change the style, and to some extent
the form, of the "face" and use

We now examine some of these ideas in printer-plot ideas. Turner & Tidmore

more detail. (1981) developed a FORTRAN program for

this which was relatively easily
transferred to the Amdahl mainframe at

DATA the University of Ottawa by Mr. P.

Beynon, one of my students. Later Fred

Data has many attributes: format, Brown designed a face-drawing program

medium, content (or lack thereof), in BASIC for an Osborne i, in the

timeliness, volume (of data), history process applying some ideas from
(author, origin, methods of gathering, portraiture to improve the "facial"

notes and opinions), imputation p

methods, sampling design, aggregation It

procedures, whether "raw" or "cooked", statisticians areheunlikelysto be

security ar confidentiality status (Is ike

owe this addition to a conversation satisfied with just one of the above ,

with Gordon Sands). Other workers, alternatives being available. When

% %,



graphical devices are avai.lable, the trend is toward packages, even though
printer-plot in unlikely to satisfy, this may make it more difficult to

Therefore, a range of software is going perform particular computations in -

to be needed, all pieces of which particular computing environments. The
should interface easily to the data and usual form in which packages are

to the command processor, thereby distributed is as an ensemble of code
allowing the statistician to control executable on a particular computer
the computations, configuration, since it runs against

the producers' interests to have users
As a footnote to this discussion. I transport (steal?) the code to other
would Ilk& to point out that machines. Libraries are usually
statistical displays of a relatively available only in machine (object) code
advanced nature are being used outside form, while the individual programs of
the orofession. On Monday. March 11, statistical software may be found as
1985. nn peqe B6 of the Toronto Globe source code.

rnd Mail (Report on Business) is a

"I-ite nicely executed set of star Source code must be expressed in some
displays with an interesting choice of programming language, and most object

axes directions and scalings. This code reflects some of the constraints
serves to underline the need for implicit in all programming languages.

standardization of the practice of The languages themselves echo features
tabulation and display so that readers of the hardware which is available --

moving from one set of displays to floating-point arithmetic, graphical
another are not fooled by a simple devices, memory management. At the
change in the conventions, hardware level, we note that there are

many established international,

national or institutional standards
METHODS which have been agreed and adopted. (I

specifically exclude the so-called
Methods are the translation of "industry standards" created by
statistical thought into procedures. advertising copy writers.) Programming
The greatest obstacle here to language standards are gradually having
portability is the many levels of an influence on the software being

choice in transferring the general idea written, but to my knowledge there are
into a specific and unambiguous no standards yet being considered for
procedure. For instance, in the design and expression of program

considering the general method of packages. For the user to be able to
regression, 100 years old this year, we begin using one package after
must first decide between the usual experience with another, some
least squares loss function or other reasonably simple guidelines are
metrics, second (assuming least clearly needed for the user interface,

squares) whether conventional linear, for the meaning of commonly used words.
ridge or nonlinear approaches should be and for accessing data, devi..es, or

used, and third (assuming conventional other computing resources.
linear l.s.) which algorithm to
implement. Even having chosen a As statisticians we should be more
particular algorithm in general, for aggressive in supporting existing
example, solution of normal equations, standards, even as we begin the search

OR decomposition or singular value for new ones to cover our particular
decomposition of the independent area of work. Our lack of awareness of

variable matrix (Nash, 1984, p. programming standards is illustrated by

166ff), we may have to select an code published by Frank (19811 in the
implementation approach. Journal of the American Statistical

Association. In a program barely one
So far, we have no executable program page In length, practically each line
code. Software is the realization of has some construct or other which is
methods, and once again it is the non-standard, a typographical error, or
diversity of options which hampers the a stylistic fault. If the purpose in

portability of the statistical publishing this code in to allow its

computations. We may choose to use by other statisticians. then the

oruniz byr othertca Statfticans thnSh
oa ec o r librar o rea editors h even more than the author,individual programs which stand alone. have missed the target!" -"";as a collection or library of related .,

programs and/or subroutines, or as an
integrated package not requiring the

% user to provide controls or operating

system commands. Clearly the current

. . . . ....-



HANDLING CHOICE one avenue for airing differences of

opinion. For discussions at a more

To render our computations portable to detailed level, workers may want to

other computing environments and consider establishing electronic mail~practitioners. I suggest four main conference%. moderated by knowledgeable %

routes: researchers who can focus discussion. %

1) Documentation of sufficient quality DOCUMENTATION

is needed so that all relevant details
of the implementation of a method or My firm opinion is that good

the characteristics of a data set or documentation is the core of advances
approach to an analysis are clearly in portability, and should mention the

discernible. Special features -- the following:

exceptions to the rules -- need to be
noted. - the data or type of data which can

be/was analyzed

2) Statisticians need to agree, either - the methods, algorithms, software

formally or informally, on the used
procedures and ideas of standard - the time/date when each entry in the

algorithms and practices. While the documentation was made

effort to formalize agreement may - all edits (of data / methods I

appear to be enormous, there is a documentation)
growing body of work which is carried - observations / comments / hunches

out by specific methods attributed to - the name(s) of persons adding to or
workers by name, for example, changing documentation.

Marquardt's method for nonlinear least j
squares parameter estimation. Such TRAINING, EDUCATION AND RESEARCH

methods can be written down clearly
(Nash. 1979) in step-and-description Portability of statistical computing

form, and modifications can be noted in concerns the transfer of ideas, which

suitable documentation. However, the at present is plagued by our academic

will is needed to perform activities traditions. These have led to delays

*seemingly peripheral to statistics, in publication because of the financial

pressures on Journals and the slowness

3) For most statistical analysis the of refereeing and review. Worse, since

computations may be consioered academic workers' career development

conventional. To avoid disagreements depends in part on journal articles,

over the results, standard computer there is little credit for

programs and data handling procedures non-traditional forms of idea transfer

are needed. Again, the effort to -- computer conferencing, software

obtain formal agreement may not be development, computer aided instruction

required, since many statisticians are development. It is also clear that

using a relatively small set of use is going to be made of statistical
packages such as Minitab. SAS, SPSS or computation by those who have had no
DMDP. There is a considerable interest part in developing the tools -- new

in the development of test problems statisticians, professionals in other
(see the workshop session 'Measuring disciplines, and the general public.
the performance of statisticians with The last group is an increasing "user'

statistical software* of these in developing business or public

proceedings) and it is likely the policy, where it Is Important to argue
producers of packages will align their the consequences of decisions rather

major programs to produce similar than the validity of the data or

results in order to avoid criticism and methods. Consequently, impatience with

consequent marketing headaches. Once results which cannot be repeated is to

again, variations on a theme need to be be expected, and the codification and

documented. Moreover, the existence of standardization of statistical practice

a standard method should not prevent can have a large payoff.

researchers from attempting different 461:
approaches. A by-product of such codification is

that it permits expert systems, either

4) Mechanisms need to be established tactical (for specific types of

for resolving real or apparent computations) or strategic (to

inconsistencies in results, recommend global approaches to data

Statisticians are in the forefront in analysis), to be developed.

this regard, since our journals have
adopted a practice of presenting papers
followed by discussions. This presents

r1%7



REALIZATION OF PORTABILITY The third "investment" needed is in the

development of the intellectual

The discussion above has a possible property to be transferred and shared

concrete realization which can be begun among statisticians. Developers will

immediately. The technical have to receive academic credit for

requirements to allow statistical data such work, or it will have to be

and software to be transferred from remunerated in the marketplace. The

location to location via communications latter remuneration requires royalties

technologies can be met, even if not to be paid, suitable cooperative

with great ease. At a minimum, these enforcement of ownership of the

requirements are intellectual property, and attraLtive

pricing and service by the vendors to

1) file formats for programs and data, encourage users to obtain the material

which I would currently recommend be from the authorized source. Indeed,

simple text +files (code may have to be software vendors such as Borland

transferred as hexadecimal digits). International have demonstrated that a

good product at an attractive price

2) file transfer mechanism, such as will not be "stolen" to an appreciable

electronic mail with suitable file extent.

server(s). Byte magazine already

allows users to download programs which PROGNOSIS

have appeared in the magazine, but

access is at the moment via The above recipe for permitting " ..

long-distance voice lines, which are portability of statistical computing

much more expensive than the via a central database of data,

packet-switched data networks. programs and documentation is feasible %

to try now. I believe that the time 
is

3) standards for data and programs. ripe to begin some experiments in

While not yet established, one can restricted areas of statistical

imagine a relatively simple, limited computation to discover the details of

standard for small to medium sized data design which will facilitate further

sets and for the expression of programs progress. Standards for computer

in source code in one or more programs for statistical computations

programming language for a restricted are overdue, particularly for those

class of target machines. which are published in journals. In

order to move from the domain of

The technical requirements, as research to generally available

delineated above, will not be reality, analyses of the risks and

translated into a reality without benefits of commercial investment will

Investments. First, entrepreneurs will need to be prepared, and consortia

need to foresee sufficient rewards to formed to market (partial)

justify the expenditure for a implementations of such systems. This

"head-end" file store to maintain the last point represents the end-goal of

base of data and software with the ideas presented here, and believing

attendant telecommunications hardware that the concepts presented are

and software to allow easy access for feasible to carry out, I have started

(possibly) naive users. The hardware to seek business alliances to realize

for telecommunications at the present them. However, I hope that those in

time should probably link to one or the audience who do not accept the **•

more of the public packet switched total parcel presented will still find

networks rather that the usual valuable points within the discussion.

voice-line telephone. Software must Finally, while I have focussed on T.

handle both the database am well as the moving ideas rather than people and

user interface. Simple but effective machinery, it should be kept in mind

charging algorithms are needed so that that there are often reasons why it is

revenues can be recorded and collected necessary to travel and transport in

without undue difficulty for order to take our statistical

subscribers, computations with us.

The development of standards requires

investments of time and money on the REFERENCES

part of those involved in statistical
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ON BOOTSTRAP ESTIMATES OF FORECAST MEAN SQUARE ERRORS FOR AUTOREGRESSIVE PROCESSES ..

David F. Findley.

5-...

Statistical Research Division l

Bureau of the CensusI -
Washington, D.C. 20233

This paper presents several analyses which suggest that the bootstrap procedure used ;.

by Freedman and Peters to simulate errors in forecasting future values of an econo-
metrically modelled process is of limited usefulness for estimating mean square fore- "

cast errors.

1. INTRODUCTION "2. BOOTSTRAP ESTIMATES OF UNCONDITIONALCESSES

Freedman and Peters (1984) recently applied MEAN SQUARE FORECAST ERROR '''

a resampling procedure (the "bootstrap") to".'
Sbtain estimates of mean square error for the

forecasts from an autogr ession with exoge- The simple bootstrap procedure of Freedman and
neous terms. In this paper, we start with a Peters we described below would appear to be
theoretical analysis of their suggested appropriate when observations Yifli,YT are
procedure for the case of (not necessarily

sttoar)atoerssv odl itotavailable from a time series obeying a general ::
statonay auorgrssv models withoutio p fth frFgenous terms and later descrie two situtoreA SQUArereS T o

atrons in which the same conclusions hold in

the presence of exogenous variables. (2.1) Yt " 
+ 

#lYt-i 
+ 

..
+ 
#pyt-p..'¢

The theoretical mean square forecast error + et  (tfp+o)

from an estimated model is the sum of two
components, the mean square forecast error whe re et (t)p+ ) are independent, identically
of the optimal predictor and the mean square distributed random variables with mean 0 and

difference between the optimal forecast and
staetiay) aoreg'sreas me s it tr variance o

2 
which are independent of earlieral

teoenousaterad e' oeat hslatter decrb tosiu;pt oreaut orkressiond Ypt-k ofte form-

component is of order I/T, where T is the tafn- r
length of the observed series .and so is+ y . pnegligible wth large samples. Our theoret- dependent. It is assumed that the order p Is

ical analysis in Section 2 shows that the known and, only for simplicity of notation.
bootstrap estimate of mean square forecast that all of the parameters d , and idntcal

error is the sum of the usual (naive) large-
sample estimate of'the first component, eas- are unknown. Define_ = (,, .... ip) For anyearl
ly obtainable without the bootstrap, and a tha Ias forkO ebtian in are inoe-
small-sample estimate of the second. A s

gausslian Monte Carlo value of the second com- d n I e t e

poaent is obtained in Section 3 for series m-nof length 25 from the AR2) models used in (2.2) YT+m a o tJ 0 ejeT+m-j

the study of Ansley and N (wbold, along with
the valueof the roo

t 
mean square error a we-n

(rmse) of the large-sample estimator of the + fF81(YT,....YT-p+0

m-step-ahead forecast error, for m - 1. 2 - .and 5. In these examples the rmse is always where the coefficients 0
( I)  

i , 2.1).t satisfyn

suhstan Monte arlo van the O(IT) compo-
nent, supporting the observation of Stne mn(J,p)(o82) that estimates of the second com- (2.3) -O k *j-k 2 0 (O " -),

-7
ponent are of little use In estimating mean-N.'.yp-
square forecast error unless better estima-
tors of the first component are availablew and where fmfc(yT,s ....YT-p+ ) is linear in

In the final section, we discuss conditional
forecast mean square errors assoc(a2.e3)wh YT-....YT-p+l and . For example, if p-1. then "

predictions of the future of the observed
sample path, and conclude that in this context lj - and fm[(

8
,#I)](yt) - 6(1 + 41 

+

as well, the bootstrap's potential contribu-.
tion seems limited. + *T1) + Tiyt" The two expressions on the

%9.
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right hand side of (2.2) are stochastically If T is small, however, then the second term
independent since e's are independent of on the right in (2.5) need not he negligible.
earTier y's. It follows from this that Also, the quantity (2.6) may be an mnade-
fmo(YT..... YT+p-0) describes the optimal

forecast (the conditional mean of YT+, given qute approximation to a2 1 j For the%

Yl ~ ~ ~ ~ ~ ~ ~ . ... ,FT) thehtm-[ ]#

rn-1
Y1...;,YT) and that )J *eT+mj is the result- situation in which T is small, Freedman and
in orecas error Peters (1983) propose the following bootstrap

procedure. Define
This optimal forecast cannot be jrecisely deter-
mined because 6 is unknown. If V" et " Yt - 6 - I - "ipYt-p
(t ... -,?p)is any estimate oT e obtained

-- t . p+l,....T %
using Yi.... *,YT, then fm](yT,... ..yT-F+1) Since we are concerned with the situation in

is a forecast of YT+m with forecast error which only one realization of the series yt
(2.4) YT+m" fm[(YT..... YT-p+I) is observed, we will now regard the Tt's and

- as fixed. We will assume that the sample

sJ-0 + { ] YT..p+I) mean T of the ''s is 0, as happens, for ex-

- fm 6-(YT9 .... YT-p+l)}. ample, whene is chosen to mrinimLze 3 2(T-p)in (2.1). (U~therwise, use -t " in place '

Since the et+m J , J-O,...,m-1 are independent of 
m-

of ft below.) Then if we define e*, t>p 9e, the two terms on the right hand side of
by successive independent draws with replace-

(2.4) are independent. Consequently, using E ment from ({p+1, .... .}  we obtain a
to denote expectation, the mean square m-step-
ahead forecalt error when the forecast is series of identically distributed random var-
given by fmfI](yT.... YT-p+I) satisfies

-ables with mean 0 and variance 1 2 (T-p)('.5) E(YT+m - fmAF](yT,..yTp+l)}2  whose comnon distribution is the empiricaldistribution of [ep+! .. ,T)- Now we ,

%(2 1 4  + E(fW6E](yT ... *YT-p+l
)  

define the so-called psuedo-data series, yt,

by means of y* - Yt' l<t~p and
fme[](yT .... YTp+) • + , *

-p 1(2.8) Y = t + ... + *pt-p
If T is large, and 6 is a consistent estimator of e .

8 (e.g. from least squares, if Ejetl <- for
The e*ss are independent of earlier y*5* Let

some c>2, see Lai and Wet (1983)), then the *
second term on the right in (2.5) can be ig- 8 denote the value corresponding to _when
nored and the mean square forecast error can
be adequately approximated by yl.....yT are used in place of the orig-

- inal values y, .... yT: For example, if e was ob-
*(2.6) 02(T-p) I m- #1*

30 tained by least squares, we choose e* so that

AA
where the *'s are obtained by using 4's in T * 6* **

t lyt- - pYt
(2.3), and "2(T-p) Is given by tp+"

(2.7) 2 (T-p) - (T-p)-I -p s minimized.

t-p+I We have now created an analogue of the orig-
inal situation, but one in which we can use a

{Yt - -" t -lY - ' pytp)2 . (psuedo-) random number generltor to simulate : .[

draws with replacement from { ,p+l....,IT) and

... ......



so obtain as many (psuedo-) independent real- deviation of fmll(yT,...,YT-p+l) from

izations of y1**....YT+, as we like. With fmFell(YT.....YT-p+1),

these realizations, finally, we can approxi- (2.12) E{fm91(YT,...,YTp+1) -
mate the distribution of the forecast error

process y*r+ - fm e.*f(y*(...y*T.p+1)T f T- appearing as the second component on the right
to any desired degree of accuracy. To the ex- hand side of (2.5). Since the quantity (2.6)
tent that this resembles the distribution of is known independently of the bootstrap pro-

cedure, we conclude that an estimate of (2.11)
YT+m - fI1(YT,...YT+p-1), we thereby gain is, in fact, the only contribution made by this

T - procedure. Further, to estimate (2.11) it is

information about the error process in which
we are actually interested, clear that psuedo-future data YT+1, ....Y+m

For example, following Freedman and Peters are not required, but only realizations of

(1983), given realizations y*(n),...,y*(n), y*,....yr. Thus, in place of Freedman and
1 T+lI

n-I,...,N, we can approximate Peters' procedure to estimate the mean square
m-step-ahead forecast error, it seems appro-

(2.9) E*{y+ - priate to only consider quantities

f[ 8*](YT...YT-p+ ))2 N
(2.13) N-1 I ifre(y*(n)....,yl' ) -

by means of n-1 { T T-+

N fV9*(n)j(y*(n),*.,.y*(n) )}2
N-1  (y*(n) T T_p+ "

n-I T~m
using these to estimate (2.12), the component

fe*(n)(Y*(n)....-,y(") )12 "  of mean square forecast error due to the use
T T-p+1 of t instead of 6 in the forecast function.

(In (2.9) and below, we use F* to denote ex- Somewhat analogous observations can be made
pectation with respect to the distribution of for the model selection procedure proposed in

Freedman and Peters (1983): Suppose two dif-
the series e.) ferent autoregressive models, of orders p(A)"t and p(B), are fit to the observed data

The question Is, what is the relationship Y1,-,yT, resulting in estimated parameters A
between the quantity (2.9) and E{YT+m - and !B, residual populations {eA(A)+1.....

? To obtain a par- e, and ( eB(B)+ 1 .... eq), and psuedo-

tial answer, we note that, by analogy with
(2.5), the quantity (2.9) is equal to data series yA* and yB* as above. Freedman

t t
Mand Peters suggest that each model he fit to,

(2.10) ^2(T-p)j + and then used to forecast, the psuedo-data
from the other model, and that bootstrap es-

* itimates of the mean square forecast error be
E*(fm[9)(yT.. ...YT-p+I) " calculated. The model having the smaller
f,' * *(y~,. *. 2 . estimated mean square forecast error is to

](YT....YT-p+
}  "be preferred. Thus, using an obvious nota-

tional scheme, the idealized quantities to
Thus, this bootstrap procedure inflates the be compared are
naive estimate of mean square prediction er- A*(A*
ror, (2.6), by an amount E *y Om*](YA * . ' " "YA* ,,2

Tim fm T T-p(B)
.," ~ ~(2.11) E*{ f.[6](YT,...YT-p+I) " .,

m J Tn -and

(T .... E B* *. fA[oB* 1(yB* .B* 2
which is clearly a proxy for the mean square T m-i

4.- .:.

.% . .



By the argument used to den .e (2.5), these to the root mean square estimation error of the
idealized quantities are equal, respectively,
to large-sample estimate S2(T-p) of o2,

Armse(-((Tp)) - (E(02(T-p) _ o2)211  *

(2.14) 
•(T-p(A)) ,(- 

A
J"O4 )  In Table (3.1) below, we present Monte Carlo

estimates of the ratios EA2 2 and
EA*(fA(!A](yA*,...yA* ) - EmT/OmanEA{ L'J tT . .YT-p(A)) (3.3) EA2,T/rmse(S2(T-p)) """

for the observation length T=25 for some gaus-
fB[8A*](yA* ,A* )12 slan AR(2) processesT' 8 aT ...... T-p(B) -.'t"m"P b

ad(3.4) Yt - 6 + #IYt-I 
+ 
#2Yt-I 

+  
t

and

utilized in the study of Ansley and Newbold
m1(1981). We note that these quantities are

(2.15) ()(T-p(R))m' (*!)2 + relevant for the estimation of am,T as well,

since, for example,
EB**fBf (I+y2 y2)) 12

..T . Tp(B) m,T ' amT/

which is well approximated by

fj~8*~(R*,*.,B* )2am( I + .1 (EA ./02))
m-A T T-p(A) 2 'T/2_

Since the leading expressions in (2.14) and if (E .2 /o2 )2/8 is negligible (Taylor
'2.15) can he calculated independently of 

inggb (T

:he bootstrap, we see, as before, that the polynomial approximation). For each pair of
oootstrap's only contribution is to compare
forecasts and that psuedo-data at times later coefficients fl, €2 in the Table, we
than T are not needed for this. Aestimated the quantities E5 ,T and

All of the arguments given above also apply to 
sample tia

the case of vector autoregressions, and thus rmse(om(T-p)) as the mean of sample estimates %
also to the case of autoregressions with exo- obtained from 1000 stationary pseudo-Gaussian
geneous variables, provided that endogeneous series satisfying (3.4) with 6 = 0, using least
and exogenous variables are simultaneously squares to estimate 6, *1 and #2. (The IMSL
forecasted from a combined vector autoregres-sion. They also apply if all needed values pseudo-Gaussian generator GGNML was utilized.)

of the exogenous variables are assumed to be The tabled results suggest that estimation of
nonrandom and known, as in Freedman and
Peters (1984) EA?, is of little consequence when

mT

0,;(T-p) is used to estimate a?.

3. THE SIZE OF (2.12) IN SOME EXAMPLES

Again using an obvious notation, let us re- .--.9*
trite (2.5) as

(3.1) °2,T "mJ + E.2T

The analogous formula for the hootstrap esti-
mate (see (2.10)) can be written

(3.2) 2 . 2(T-p) + *2Om T  m m,T "'''*

For estimating O,T, the practical signifi-

cance of having an estimate E*AT2m of E1,T de-

pends upon the size of E12 T relative to o2 and

.. .... . .. . . . . . . . .. .
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Table 3.1 Values of n 2 with the result that this second term simpli-
m,T/Om and (3.3) for fies into a lineas expression In the higher

order moments of 6 - e. The mean-zero first
M=1, 2 and 5, for selected Gaus- order case is illUstritive: If
sian AR(2) processeswith T=25.

4 02 m E12 TO2 (3.1) Yt = oYt-1 + et (*0) (4.1)

with et, tl, i.i.d. having mean 0 and vari-

.40 -.15 1 .01 .02 ance 02. and with et independent of Yt-k when-

2 .01 .01 ever k>O, then fmr$l(YT) - * T. From the

5 .00 .01 the Taylor polynomial expansion of fmr$1(yT)

.80 -.65 1 .01 .05 about = *, we have

2 .04 .04 fm[$1(YT) -fm[*](YT)

5 .02 .02 _ ICmjmJ(A

.80 -.16 1 .03 .04 YT C Cmj $ ) , (4.2)

2 .02 .03 where Cjm = m(m-1)... (m-j+l)/j!.

5 .02 .04 Taking the mean square of (4.2) conditional

on YT, we obtain

We have not included results for those of E~fm[$](yT) - fm[$](yT) }2 =
Ansley and Newbold's AR(2) models whose 6T m
characteristic polynomials have a root in
the annulus 1.0<Izj<I.24. With T=25, y ,l CC 2m-J-kE{; . *}J+k .
simulations for such models produced large 'k1 mJmk
numbers of explosive series (the esti- (4.3)
mated characteristic polynomials had a root
in IzI<1.o). To estimate (4.3) via the bootstrap, we re-

place y* in (2.11) by YT (ideally gener-

4. CONDITIONAL MEAN SQUARE FORECAST ERRORan h s o t uc w hating the pseudo-data fn such a way that YT

In the preceding sections, we investigated un-
conditional mean square forecast error. How- YT, but see 49. below). Ry analogy with

ever, it is the error associated with predict- (4.3), we then have
. ing a future point on the observed sample

atn (realization) which usually is most of E*f () f )r2i'-'
-iterest. m YT - '.-

• f m~C ~Cm,k;2m-j -kE,(#.. ;}J+k "

4A. Mean Square Error Formulas - "miE
[ (4.4)

Since, by (2.1), the value of YT+m The efficacy of the bootstrap procedure is

depends on the data Y1, .,YT only through usually related to the extent to which the
AA

distribution of * 8 resembles that of 6 - e andthe last p observations, it is easy to check to how insensitiie tlis latter distributTon Ts ." '
pthat we can simply reinterpret the expectation to the true parameter value 6. However, for
operator E in (2.5) as designating expectation our problem, the situation iTlustrated by (4.3)
conditional upon YTYT-Is .... YT-(p+l) and and (4.4) obviously holds generally: the ex-

thereby obtain the fundamental decomposition
of the mean square forecast error conditional _ p
upon the ohserved sample path. The - fm[(YT.....YTp+i conditional on -.

YT.YT-I..... YT-(p+1) in the second term on 
%

the right in (2.5) are now held constant, YT...,YT-p+l depends on the true value
A

of 6 as well as on the distribution of 6 - ,"

r



suggesting that the quality of the bootstrap are uncorrelated with one another, satisfy

approximatlon will be influenced by the ac- ? a 2 d each at is uncorrelatedcuracy of Vas an estimate of 0. Eat.. .echa-i ucr.lae

with Yt+j for all j)-. (This equation is

sometimes called the time-reversed representa- -.
4B. Bootstrapping.Conditional Sample Paths tion of the process yt.) We can therefore use,

It would seem like an attractive idea, when, as as an estimate of *, the value I minimizing
in this section, statistics associated with
the distribution of yt conditional on YT,... T-1 (Yt - jYt+l )2 , then define at Yt

the-=t-
YT-p+! are being approximated, to generate

pseudodata yt for the bootstrap in such a t t-1 .. T-1, draw randomly with re-

way that y* = yt holds for T-p+ltT. placement from this set of residuals (after

For example, it would be appealing to estimate centering about their sample mean) to obtain

** in (4.1) from sample paths passing through aI,....aT_ and, finally, define y YT
YT" and -

To illustrate a first approach to accomplishing y - , (
this, suppose we have bootstrapped residuals Yt - ;Yt (4.7)

T from an estimate of + in (4.1). for t = T-I,...,I, thus generating a pseudo-yl... sT frmantiin is ppopiat olyif heatdefne)b

data sample path containing YT. This procedure
To generate *stfynTogeeat atsyigis appropriate only if the at defined by,.--

Yt = $Y- 1 + e, 2(t(T (4.6) are i.i.d., since this is a property

with YT -YT, we could obviously set YT = Y of the at.

and recursively define We will now show, however, that the white. -

. neithernoise noise series at can be independent only "y - - ly + l  - -let + 1

if the cumulants of yt (or, equivalently,

Its c t<T-1 (4.5) those of et) are those of a Gaussian series,

In this case. however, yt is neither inde- i.e., are 0 for orders higher than 2. Indeed,

pendent of nor even uncorrelated with et+1 let Kr denote the r-th order cumulant

for lt4T-I. Thus the bootstrapped
data fall to have a basic property of the cum(et,...,et) of et for some r>2 (assumed

original data, and the consequences of this to exist). Since, from (4.6),
A*

for the estimation of 0 from yI,...,yT

are an unresolved issue. Furthermore, (4.5) Yt =

is numerically unstable when j;<. it is easy to see that the at's are independ-

When the series yt is stationary, a second ap-
proach, which avoids the difficulties just en- ent if and only if at is independent of yt+j
countered, would seem to recommend itself. To for each -. In this case, the r-th or-
illustrate with the first order case again,

'- if yt satisfying (4.1) is stationary, then it der cumulants cum(at, yt+j.....yt+j) will be

0; see Brillinger (1975, p. 19) for the funda-
Is easy to verify that the random variables at mpcF"." mental properties of cumulants. For j=1, in [

defined by particular, since we can write

at -yt - *yt+l (4.6) yt+ = et+1 + # o

:~.. *~*%'~ .A -A, I .
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and CONCLUSION

at =yt " *yt+i = -#et+l +
Our results suggest that the estimates of
mean square forecast error which result from

(1 e 2 the bootstrap procedure proposed by Freedman
J t-0 and Peters are not significantly more re-

reliable than the large'sample estimates,

we are then led to which are ill-behavedin small samples.
This does not exclude the possibility

0 cum(at, Yt+l,.'',Yt+) = that other methods of bootstrapping
these statistics could prove useful. *.

- * cum(et+l,....et+l)
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THE EM ALGORITHM IN TIME SERIES ANALYSIS

R. H. Shumway

Division of Statistics

University of California

Davis, CA 95616

The EM algorithm is ideally suited for maximizing likelihood functions arising in
time series models involving stochastic signals embedded in noise. Successive steps

involve simple regression computations, and the likelihood is nondecreasing at each
step. Furthermore, the algorithm provides a simple and natural approach to handling
problems caused by irregularly observed time series data. The simplicity of the

approach is illustrated by applying the EM algorithm to the problem of estimating
parameters In the state-space model. Examples involving biomedical data, economic
data and data collected from the soil sciences are presented to Illustrate the

general procedure. A review is given of past experience in applying the algorithm,
using both minimally configured microcomputers and large-scale mainframes.

1. INTRODUCTION R E( t .)  (1.2)

One of the benefits resulting from the explosive

growth of microcomputer technology is that The form of (1.1) is almost identical to the

research workers now have easy access to standard regression model with 2!, corresponding
computer programs for applying some of the to a vector of random regression coefficients.

computer intensive methods of time series
analysis. Two examples are the Kalman filtering The behavior of the state vector is
and smoothing recursions for the state-space determined by its initial value , and the

model and iterative methods for maximum state equations

likelihood estimation using Newton-Raphson or EM
algorithms. lt - 0 t- + v t , (1.3)

A very general model which subsumes a whole defined for t-l,...,T, where D is a pxp transt-

class of special cases of interest in much the tion matrix and It is another independent model

same way that linear regression does is the noise process with Ewt - 0 and rxr model noise
state-apace model introduced in Kalman (1960) covariance matrix '-
and Kalman sod 5ucy (1961). Although the model I

was originally utilized in aerospace related q = E(±twt) . (1.4)

research, it has recently been applied to
modeling data from economics (Harrison and This is, of course, closely related to the first

Stevens (1976), Harvey and Pierse (1984), order autoregressive model defined previously,
Kitagawa (1981), Kitagawa and Gersch (1984), although no restrictions are imposed to
Shumway and Stoffer (1982)), medicine (Jones guarantee stationarity. The specification is

(1984)) and in the soil sciences (Shumway completed by assuming that the initial vector xO
(1985)). has mean L and covariance matrix

The general form of the multivariate state-space E - E(jO - @)(10 - p)' • (1.5)

model involves assuming that the rxl observation

vector yt (YltYrt)' can be written in the An important feature of the multivariate
form state-space formulation is that it provides one

with a great flexibility in tailoring models to

y- , Atx- + v. , (1.1) special circumstances. For example, suppose

for t-1,2,...,n, where At is an rxp design

matrix which specifies how the unobserved state yt - xt + vt

vector It - (xlt,x2t, ''.,xpt)' can be converted
into the observation vector t at any time point where the unobserved series xt is the second-

t. The additive rxl observation noises aX are order autoregressive process
assumed to be independent with Evi - 0 and
covariance xt = lxt-l + 2xt 2 + Zit .

. .
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This autoregressive "signal plus noise" model . .2

can be easily put into the state-space format P:u E[(It It)(ju 8 . .]. .
(1.1) and (1.3) by wr~cing .

Several cases of Interest can be distinguished
xt depending on the span of the data and the point

Yt " (1,0) + vt t at which the estimator is desired. For
K~t-- 1) example, the one-step predictors xt

-
1 are the

where Kalman filter estimators whereas the conditional

Ix.-IA '2)I X"t.I wl ('t) means J
. xt, based on the complete data span

xt-I 0 \xt-2 0 Yl,'',YT, are the Kalman smoothed estimators.
Forecasting can be defined as the computation of

with the obvious Identifications for At, 2!, and 
T

xt for t0T.
0 in Equations (1.1) and (1.3). 4any different
specific models can be expressed in state-space The computation of the quantities in equations
form as we shall see in later sections. (2.1) and (2.2) is a formidable undertaking if

approached by straightforward methods. The
The introduction of the state-space approach as dimensions of the vectors specified by the model
a tool for modeling data in the social and are at least rT x I or pT x I where T denotes
biological sciences requires that one be able to the number of data points observed in time.
handle the model identification and parameter However, the recursions developed by Kalman
estimation problems since there will rarely be (1960) and Kalman and 1ucy (1961) require only
a well defined differential equation describing that matrix computations of order rxr or pxp be
the state transitions. Furthermore, we would performed recursively to develop the conditional
like to be able to handle general versions of means and covariances. The process of finding
(1.1) and (1.3) which provide for the possi- the Kalman filter (x[

- I
) and smoother (x4)

bility of missing data which occurs so often in estimators again involves using the linearity
the biological sciences. The problems of assumption to determine the minimizers of the
interest for the state-space model relate to mean square errors Ptl. The derivation
estimating the state-vector it and the unknown requires using the projection theorem
parameters g, E, D, Q and R. The problem of recursively in conjunction with the model
estimating xIt recursively under the assumption equations (1.1) and (1.3). The reader is
that the parameters are known was originally referred to Jazwinski (1970) or Anderson and
solved by Kalman (1960) and Kalman and Bucy Moore (1979) for details.
(1961) and is the celebrated Kalman filter. [

The calculation of the Kalman filter estimators
2. FILTERING, SMOOTHING AND FORECASTING proceeds by the so-called forward recursions

The problem of estimating . in the state-space -
1  

(2.3)

model (1.)-(1.5) can be approached by noticing 
"-'. ,.3

that the linear estimator with minimum mean t t- -I tl(2.4)
square error is the expectation conditioned on it I + Ktyt - Ati t  (2.4)

the observed data ,In order to for t-1,...,T with 0SO The one-step fore-

specify this procedure, consider the general t-I
conditional mean cast is a strict update of the previous

estimated value whereas the best estimator
xt - E(XtlYt,.,y,), (2.1) involving current data 4i is a weighted average

i-I
of xr and the error that one makes in pre-

defined as a function of t, the point at which dicting Xt. The pxr weight or gain matrix Kt is
we need the value, and the span, a, of data defined as =t-I ' t-I
which is used to determine the estimator. The Kt Ptt At(AtPtt At + R)

-
, (2.5)

general mean squared covariance function of the
estimator (2.1) will be denoted by where the covariances are updated recursively

Z .

.a-

.5°



using t conditional on _D, where xt is defined in %

t-.l i-I '
p -Pt-l,t-l0 + Q (2.6) (2.1). The innovations, conditional on

an -', -1, have zero means and covariance

t andt- - t-lPtt " Pt
1 
- KtAt Ptt (2.7) Et - AtPtt At + R • (3.2)

The log likelihood for estimating the parameter

with PO " -. e - (0,Q,R) is essentially

If the estimator for E is to be based on all of logT(Y) Iog Tt'-

the data Yj,.. . , , we need the Kalman smoother I l gtl I _ (3)
estimatoKs. These can be developed by solving
successively the backward recursions for which is a highly nonlinear function of the
t-T,T-l,...,l using the equations unknown parameters. The usual procedure is to

t-l 'T -fix xo and then develop a set of recursions for-I t-l T t~ Ih :: "

" x-l + Jt-lt - xt (2.8) the log likelihood function and its first two
derivatives. Then, a Newton-Raphson algorithm

where can be used to successively, update the parameter

t-l t- I-l values until the log likelihood (3.1) is
-t-l -t-l t--lp ( ) . (2.9) maximized. This approach is advocated, for

example, by Gupta and Mehra (1974), Ansley and
The mean square error covariance for the Kohn (1984), or Jones (1980).
smoothed estimator satisfies the recursions We "h

T t-l T t-1 We give a simpler approach here, based on the EM
Pt-l,t-1 " Pt-l,t-l+Jt-I(Ptt-Ptt )Jt-1 (2.10) or expectation-maximization alg.rithm of

Dempster et al (1977). The EN algorithm was
If a forecast is needed It is clear that one adapted to this time series model in Shumway and
only needs to extend the forward recursions Stoffer (1982). The EM algorithm proceeds by
(2.3)-(2.7) into the future under the convention successive maximizing the current conditional

-- that Kt-O in (2.4) and (2.7). expectation of the complete (but unobserved)
data log likelihood based on X - (xO,wl,...,Wr,

The Kalman filter and smoother recursions give a vl,... ,vT) conditional on the incomplete (but
convenient means for calculating the conditional observed) data Y = ....., r). This complete-
expectations which are of greatest interest in data log likelihood, given in Shumway and
solving problems in smoothing and forecasting Stoffer (1982), involves the parameters
for time series. The data are not required to 0 - (p,E,,Q,R) in a convenient form but cannot
be regularly spaced so that the smoothed be maximized directly since the xt process is
estimators x4 can be used in lieu of missing not observed. However, if the current value
values (see Section 3). The main problem which of 8 is O and Ei denotes the expectation under
remains, however, is in specifying values for 01 the EM algorithm proceeds by maximizing
the unknown parameters _, E, 0, Q and R which
are needed in order to apply the recursions. Q(0G0i) - Etflog L(X,6)IYI (3.4)

3. ESTIMATION OF PARAMETERS at each step. Equation (3.4) can be written in
terms of the Kalman smoothed outputs. The mxi-

The estimation of the parameters involved in mization of the resulting function with respect
specifying the state-space model (1.1)-(1.5) can to the parameters 0, Q and R then is exactly
be accomplished using maximum likelihood if we analogous to maximizing the usual multivariate
are willing to assume that , and normal likelihood function and yields the r

are jointly normal and uncorrelated regression estimators
random vectors.

0(i+l) = St(l)rSt-t(O)Fl, (3.5)
The usual likelihood is the "innovations" form
of Schweppe (1968), which involves writing the "
joint likelihood of the innovations Q(i+l) - T-ISt(O)-St(l)(St-l(O))-IS't(l)1, (3.6)

- - Ax_ 1 , (3.1) where

. .. .- .. 1

* * .............................hC.. .... .-...... ,..c°'
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j T maximum of the log likelihood function under
S E t)" 

T  
+ T x ) (3.7) fairly mild regularity conditions (see Wu

t 1 (1984)). While the convergence rate of the EM
for J-O,1, and algorithm is somewhat slower than that possible

1 N T T T' T with Newton-Raphson or scoring algorithms (in
R(i+l) - T

-  
(Et + AtPttAt). (3.8) the neighborhood of the maximum), one may be

t.1 able to avoid the large divergent step correc- ,
with tions which are characteristic of these latter

T T two procedures in the multiparameter situation.
y (3.9)

An attractive feature available within the
The term involving and Z has only a single state-space framework relates to the ability to
observation and we arbitrarily fix E and take treat series which have been observed irregu-

T larly over time. The EM algorithm allows one to
-+l (3.10) have parts of the observation vector yt missing

at a number of observation times without invali-
The Kalman smoother can be used to compute all dating the computational procedures described in
the terms in (3.7) except St(l), which involves the previous two sections. An especially simple

T procedure results for the special case where the
Pt,t-l - cOv(jt,xt-llyl,...,) . (3.11) unobserved and observed parts of the error

vector v_ are uncorrelated.
Shiuway and Stoffer (1982) have given the follow-
ing backward recursions for determining Pt,t-I Suppose that at a given step, we define the par-
for t-T,T-,...,2. The basic recursion uses tition of the rxl observation vector

T t-1 ' T t-l * zt - (yt _ )' 2 ),) where _i is the r1 x I

Pt-l,t-2=Pt-l,t-Jt-2+Jt-l(Pt,t--4Pt-l,
t- l)J t- 2

t observed portion and Y2 is the r2 x I

(3.12) unobserved portion leading to the partitioned

where we start with form

T ,T-1 - (1 KTAT).PiT-1 . (3.13) A(l (\ ) A1)

The ) + (3.14) .

The overall procedure can be regarded as simply (2) (2) (2)) (31-
alternating between the Kalman filtering and At ( 2). )

smoothing recursions and the multivariate normal' where At and At2) are r1 x p and r2 x P
maximum likelihood equations (3.5)-(3.10). We matrices and
summarize the Iterative procedure as follows:

1. Initialize p0. to, Q o, R0 and fix E. '() RI l
2. Use the Kalman recursions (2.3)-(2.9) to coy - • (3.15)

vT T T 2) "
calculate xt, Ptt and Pt t-1. ) R2 1  R22

3. Evaluate the log likelihood (3.3). "t"/
4. Update parameters to 41, 1., Ql, R, using Stoffer (1982) established that Equations (2.3)- , -

Equations (3.5)-(3.10). (2.10) hold for the missing data case given
5. Return to step 2. above if one makes the replacements(I• (0, ') an ,
One of the advantages of the IN algorithm - ( 

=  
,O) and At . (A ,0), and 1, -

results from the simplicity of standard multi- R21 - 0. That is, if it is incomplete, the
variate normal calculations which depend only on filtered and smoothed estimators can be calcu-
output from the forward and backward Kalman lated from the usual equations by entering
recursions. Successive steps of the form (3.4) zeroes in the observation vector yt where data
never decrease the likelihood function and one is missing and by zeroing out the corresponding
is guaranteed to converge to at least a local row of the design matrix At. This leads to the

r'

%-
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smoothed estimators (T) dth oarac the previous iterate. I
fntosP(T), (T) 4 n h oaine4. EXAMPLES

functions P t,t-1 in the missing data case.
4.1 An Irregularly Observed Biomedical Series

The maximum likelihood estimators, as computed
in the EM procedure, require that one take the In order to give an illustration of an incom-
conditional expectation of (3.4) under the as- plate series, consider the problem of modeling
sumption that yt is incompletely observed. Now, the level of several biomedical parameters
defining the incomplete data as monitored after a cancer patient undergoes a
¥41) - (A1 ),x).,* 1)); the expectation of bone marrow transplant. The data in Figure 3.1,
the third term can be computed by conditioning presented by Jones (1984), are measurements made

5, first on-both y4l) and It and then on y1) which for 92 days on the three variables log(white
leads to (cf. Shumway and Stoffer (1982), blood count), log(platelet) and 1CT(hematocrit).
Shumway (1984)) Approximately 40% of the values are missing,

)- (3.16 with the missing values mainly occurring after
R(1+1) 1 DtGtDt (3.16) the 35th day. (The missing values are shown

t-l along the time axis on the plotted series). The "
main objectives in this example are to model the

where (1) three variables using the state-space approach
G t F and to smooth the data. According to Jones

" (3.17) (1984), "Platelet count at about 100 days poet
transplant has previously been shown to be a

tF~l FGtF +P2.1good indicator of subsequent long term
with survival."

F - R21 ,t (3.18) S. .m3I5 I '.5

R22.1  R R22 - R21R11Rl2 , (3.19)

and A T"
G T ' () " T)A(')' (3.20)

" !Ot t + At PtA t (ONE MARROW TRANSPLANT- LOG(HITE BLOOD COUNT)

where W" -.M7 -9151

T' (1) (1) TLt" -^At It ' .- ,,.'' "I

The matrix Dt is a permutation matrix which
reorders the variables in their original form. - --- - -- '- - - -
This is necessary because the application of I'm

(3.17)-(3.20) requires that the variables be BONE MARROM TRANSPLANT- LOG(PLATELET -"

ordered so that the observed values appear in
(1) 5.. 30 .M a .

A simplification introduced in Shumway and
Stoffer (1982) is to assume that the errors
relating the unobserved and observed components .- -
are uncorrelated, i.e. R12 - 0, so that the 1 m1
correction (3.17) reduces to PON MARROW TRANSPLANT- HCT

(1~) 0 3.2 Figure 1 - Bons marrow transplant data (Jones
Gt 0 . (3.22) (1984)).

The simple state-space model with three compo-
If the vector observation has all components nents was chosen with the observed log(WBC), - -
missing, the correction reduces to adding R from log(platelet) and HCT denoted by ylt, Y2t

%'..

%°r
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and Y3t and the unknown true levels denoted by 4.2 Signal Extraction for Soil Sciences Data %

x1t. x2t and x3t. The true vector process
satisfies the state equation As an example of a simple signal extraction

problem consider the following example from

[I ] .981 -.035 .008 ,t - 1 wlt Shumwswy (1985) involving salt content valuesL measured at intervals of one meter over a line
x2t .059 .925 .00 x2,tl + w2t transect. Figure 3 shows the average of five ~~such transacts (parallel samples) taken from '

x 3 -1.078 1.811 .823 x3,t- Lw3t. Norkoc et al (1984).

where the transition matrix was extimated after lu. S.Mm. 9.14

30 iterations of the EM algorithm. The state / ..
and observation covariance matrices were esti- /

• ~~~mated as, ,-. ..

f.014 -.002 .013 007 0

Q-.002 .003 .027) , R 0 .017 M EAN SALT IEC 15-3 CONCTENT

\ .013 .027 3.485/ 0 0 .63 Figure 3 - Average salt content over five
transects (I pt = I m). (Horkoc

Again, the coupling between the first two series et sl (1984)).
and the third series is relatively weak. The
regression relating x3t(HCT) to the other two
series seems to be fairly strong, i.e. It is plausible that the salt content can be

* 'represented as a non-stationary trend function
x3t - -l.078xl,t-1+1.811x2,t-l+.823x3,t-l+W3t superimposed on noise. We might assume (see

Shumway (1985)) that the observed salt content
The smoothed values, as evaluated using the at the spatial point a, say Y., can be

A Kalman recursions, are shown In Fi re 2 below, represented as

The approximate standard errors of the ys - xe + v5  (4.1)
interpolated missing values in the latter parts
of the series are in the ranges .11-.13, .08-.09 where x. Is the smooth trend function and vs is
and 1.7-2.0 for the three series respectively, the irregular white noise component with

variance O. The basic objective is to produce
• 1.5n. an estimator for the nonstattonary trend

function x.. In order to specify smoothness
constraints for the trend function xs we might
Sassume that the second difference (derivative)
is small, say

10Nm V2 Xs - Wls (4.2)

iNE MARROW TRANPLAIT- SMOOTHED LOSG(H|TE BLOOD cOUNT)
where V is the usual difference operator and wls

El.l"it2- is a noise with variance aw . There is an obvi-

ous similarity here to spline smoothing (see
Wecker and Ansley (1984)). Now, since

V2xs - x- 2x*l + xs. 2  (4.3)

ZONE MARROW TRANSPLANT- 9"OTHD LOG(PLATELET) it is clear that by defining the state vector
!f w (xs,xs-l)', the model in Equations (4.1)

S37Nand (4.2) can be written in the state-space form

" -y " (1,0) -- + vs  (4.4)

VONE MARROW TANPLANT- SMOOTED HCT where

fx\ 2 -1 (Sl+ 9

Figure 2 - Smoothed bone marrow transplant data - + (4.5)
Xs 1  O/x -2/

1 0 x-=e
a'8. 2)

A



and the obvious identifications can be made in In order t, develop an additive model for this
(1.1) and (1.3). The transition matrix 0 is particular kind of data, suppose that we regard , %

fixed in this case and we have only to estimate the observed series yt as being composed of
the variances 4 and 4 associated with the trend, seasonal and irregular components,
observation and model noises respectively. The denoted by xlt, x2t and vt respectively. The

estimator for o w comes from qll in observed data can be modeled as

S,
1(St(0)-St(l)-4S(l) (4.6) Yt xlt + x2t + vt, (4.7)'" Q - T +tO-tZ) @tl St-li(O)0 ) .

where the exponential trend component might be
where 0 is the fixed transition matrix. The modeled as

esiaorfrv follows directly from (3.8) as xlt - *x1 t-l + Wit * (4.8)
usual. The final estimators for the variances

are ; .102. .021. where *>1 represents the growth rate. The
quarterly seasonal component might be modeled as

The smoothed values 3, under this model are x2t ' -x2,t_ 1 - x2,t-2 - K2.t-3 + w2t, (4.9)
plotted in Figure 4 and it is clear that the
smoothed values follow the major turns in the reflecting the fact that the sum of the four
data quite well. The resulting smoothed series quarters should be approximately 0 for the
has a prediction standard error of .16. seasonal factor. The problems of interest for

the model can be reduced first to estimating the
VA. -s m . m parameters and then the unobserved components

xlt and x2t. One would also like to be able to

forecast Yt" A problem of some interest in
" economic applications Is in estimating the

series with seasonal effects excluded, i.e.K5  (Nit + x2t), sometimes termed seaaonal

.SMOOTHED MEAN SALT CONTENTiEC 15-36C") adjustment.

Figure 4 - Smoothed salt content using (4.1) and The model specified by (4.7), (4.8) and (4.9)
(4.2) wth ;2 - .102 . - .021. can be put into state-space form by defining the

"- state-vector !I - (xlt,x2t,x2 t-l,x2 t-2)', 5o -.
that the observation Fquation'(I.l) tecomes

4.3 Forecasting and Seasonal Adjustment of xlt
Economic Series

The inherent flexibility of the state-space Yt (1.1,0,0) + vt  (4.10)
model can be exploited for developing additive x2,t,.
models for economic time series. The use of1 "
state-space methods for analyzing additive x2 , t-'

% "models of importance in economics has been
proposed by Kitagawa (1981), Kitagawa and Gerech with the state Equation (1.3) given by
(1984) and Harvey (1983). As an example, con-
Sider the quarterly data on earnings-per-share It * 0 0 0 xl't-l It
shown in Figure 5 for the U.S. company, Johnson F..F
and Johnson. The general character of the x2t 0 -1 -1 -1 x2,t- 2t (4.

series seems to emerge as an exponential trend + (4.11
with a seasonal kind of oscillation superimposed x2,t-1. 0 1 0 0 x2,t-.2 0
on this trend; the seasonal oscillation tends to
repeat every four quarters. x2, t- 21 0 0 1 2,t-3

qii 0 00

F\

" R:r,1 , ' 0 q22 0 4.12

0: 0 0 0T'-:
0- 0 0 0'

QUARTERLY DATA- JOHNSONt & JEON" ?-UATE FOECS

.-." Figure 5 - Quarterly earnings per share (1970(4) .-

to 1980(1) and 7 quarter forecast %
for Johnson and Johnson.

L
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gives the two covariance structures. Harvey The log likelihood converges nicely to a local %

(1981, p. 180) shows that this model with #-I maximum although, at the tenth iteration, the
is essentially an ARI4A (0,1,1) x (0,1,1)4 which process was stopped and the seasonal and -
has been applied to accounting data by Griffin Irregular component variances were incremented
(1977). strongly in the directions that were suggested

on examination of previous iterations. The
The computational modifications required for final value of 1.037 for the parameter # implies .
this state-space model are minor since qll and that the exponential growth rate is

;22 can now be obtained as the first two approximately 3.7 percent per quarter.
diagonal elements in Q defined by (4.6). The
estimated transition parameter # is just the The values of the parameters given in Table I
ratio of.the upper left corner elements of St(

1
) were then used to estimate the trend xlt and

and St-l(O). That is seasonal components x2t of the model. These are

shown in Figure 6 and we note that the estimated
0S(1))11 (trend plus seasonal," say xlt + x2t, produces
l Stl(O)Jl1( credible version of the original series. The ,"

estimated trend might be taken as a seasonally
where [Al j denotes the ijth element of the adjusted version of the series.
matrix A.

Table I shows the successive estimators for the
four parameters as applied to the Johnson &
Johnson data.

Table I - Successive parameter estimates for
earnings-par-share for Johnson & . . . . . . . .
Johnson using additive model is

ESTIMATED TREND- JOHON S JOHNSON

lter * q11  q22 r11  2togL I. a .NII

1 1.028 .010 .010 .033 -93.96 , . "-

2 1.036 .012 .029 .062 - 5.31

3 1.037 .012 .047 .068 3.55 ,J,___ ,_,______
to

1.037 .011 .061 .066 6.26 T °
Figure 6 - Estimated trend, xlt, and "trend plus

5 1.037 .011 .072 .062 7.34 seasonal," + T for the earnings data.

6 1.037 .O10 .080 .057 7.85 a''
A fundamental question of interest here would be

7 1.037 .010 .085 .054 8.13 in producing forecasts for the series, say

T . T T
8 1.037 .010 .088 .051 8.30 yt - xit + x2t

9 1.037 .010 .090 .048 8.42 for t>T. It is clear that adding the Kalman
smoother outputs for the first two components of

10 1.037 .010 .092 .046 8.50 xI will generate these forecasts and that the
mean square error for the forecasts can be com-

11 1.037 .010 .097 .038 8.74 puted as
12 1.037 .010 .096 .037 8.77 t2 t + 2[t]12 

+  
P 22

13 1.031 .010 .096 .036 8.78TT
where [Pt]tj denotes the ijth element of P t-"

14 1.037 .010 .096 .035 8.80 Table 2 shows a three-quarter forecast for the
second through fourth quarters of 1980 compared

15 1.037 .010 .096 .035 8.80 with the actual values. There seems to be quite

-7..:-,, -aM
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good agreement between the observed and pre- REFERENCES
dicted values and all three prediction intervals
include the true values. [11 Anderson, B.D.O. and Moore, J.B., Optimal
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Designing An Intelligent System for Spectral Analysis
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ABSTRACT

The design of a software package to help a user perform
spectral analysis is described.

1. Introduction analysis, a user can produce a large number of new

Spectral analysis is widely used in the engineer- auxiliary data sets that are formed by manipulating

ing and physical sciences, but, because of its corn- the original time series. (In a recent analysis of

plexity. there are many pitfalls to its successful some wind speed data, one user produced over 50

application. There are currently a number of auxiliary data sets.) Keeping track of all these new

software packages that can do the numerical com- data sets is a real problem. It is a common experi-

putations that are required for spectral analysis, ence amongst analysts to be unable to recall with

but none of them offer extensive guidance for the the passage of time where all the auxiliary data sets

user. Recent developments in computer science came from. An ideal software package would pro-

have made it feasible to construct intelligent vide some way to organize these data sets automati- a. -,

software in the form of expert systems that mimic cally.
the actions of a human expert in such diverse fields A second desirable feature is more extensive
as medicine, geology, and computer installation, graphical capabilities than current software pack- '-
Moreover, Gale and Pregibon[3] have made a first ages generally provide. The availability of worksta-
attempt at constructing an expert system for sta- tions with enough power to quickly update a graphi-
tistical analysis, namely, the REX system for regres- cal display (so-called real-time graphics) opens up a
sion analysis. whole new category of displays that a user would

Because of these developments and the recent like to have available.
availability of powerful computer workstations with A third area in which software can aid a user is
high resolution graphics, we are developing a to provide help in the specification of parameters
software package on such a workstation to help for sophisticated methods such as robust fitting of
scientists perform spectral analysis. The research autoregressive models. Here the statistical metho-
questions that our project addresses are: 1) what is dology has become so complex that even the -.

a good way to incorporate intelligence into a designers of the methods have difficulty in applying - -

software package? 2) what help can a software them without constantly referring to their own
package provide a user for organizing the results of technical reports.
a spectral analysis? 3) is it possible to develop a For inexperienced users, the main problem with
systematic strategy for spectral analysis such that, current software is the lack of in-depth help. An
given a time series that may be regarded as a reali- ideal software package should do, guide, explain,
zation of a stationary process and given some or no and even teach the techniques of good spectral
a priori knowledge on, the shape of its underlying analysis. Loosely speaking, augmenting software to
spectrum, no important features of the data are provide such help is called making the software
missed? and 4) what new tools for spectral analysis more "intelligent".
are possible on a state-of-the-art workstation? In
this report we concentrate on the first two of these 3. An Example of Spectral Analysis r
questions. In order to incorporate intelligence into spec-

tral analysis software, it is helpful to develop a
2. Desired Features fox an Ideal Software Package model of how a human expert does spectral

What exactly do we feel is lacking in available analysis. To focus our discussion below, let us
software for doing spectral analysis? For heavy quickly step through an example of a spectral
users of interactive statistical packages such as S analysis (the reader is referred to Priestley[6] and
and ISP, one deficiency is a lack of a data base Bloomfield[l] for a complete discussion of the sta-
management system. In the course of a spectral tistical theory used here). The time series for our
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example is monthly average values of the daily Since the data are all positive, we might con-
4 water flow of the Willamette River at Salem, Oregon. sider looking at the logarithm of this data in an

We begin by examining a plot of the data versus attempt to stabilize its variance over time. (For
time (figure Ia). We note immediately the marked some purposes for which spectral analysis is used,
cyclical behavior of the data. There is, however, a such a transformation would not be desirable even
problem with regarding this series as a realization if it did stabilize the variance; we assume that this
of a stationary process, namely, there is much less is not the case here.) This transformation is shown
variability in the series at the low points of each in figure lb. We see that the variability of this
cycle than at the high points, series is much more uniform.

a: plot of Willamette River data

0
0

0 100 200 300 40
time (months)

b: plot or x t . log of Willamette River data

, o0 200 300 40
time (months)

c: periodograrn of demeaned x t

0 0 .3 0 . . 0 .3 0 .4 0 5 0 .O 0 7 0 .s 0Q . " ".

frequency (multiples of r)

Figure 1: Harmonic Analysis of River Flow Data, 1.
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Since the sampling time is one month, figure lb study these residual plots to judge the adequacy of
shows that the period of the phenomena is about our model.
one year (as one would suspect from physical con- There are two comments we should make about
siderations). This plot suggests that this time this analysis. First, the actions that we have out-
series may be modeled by a harmonic process of lined are not a literal record of what an expert did.
the form Some false starts and "snooping around" have been

= removed. Second, for this time series, if our
k=1 assumed model were true, we would have only one

estimate for the spectrum (ignoring minor varia-
where yx, K, iAk,. 1BkI and I are unknown con- tions such as fitting the model by some criterion
stants and legi is a zero mean stationary process other than least squares). For time series that
with variance cr,. and spectral density function hx). must be modelled by a purely continuous stationary
If k were a white noise process, the spectrum for process (i.e., the spectrum is determined by a spec-
JXj would be completely determined by JAkI, tbk , tral density function), there is a subjective element
It , and a,2. introduced by the choice of such things as data

Our first task is to estimate K, the number of tapers, prewhitening filters, window smoothing
sinusoids with distinct frequencies in the model, parameters, and order of autoregressive models.
and the corresponding wk's. The standard way to do These choices result in a wide variety of different
this is to look for peaks in the periodogram of spectral estimates. Unless we have some external
JXt - Xi, where X is the sample mean. Figure Ic information about a time series, there is no way of

shows that there is one prominent peak in the telling which estimate is closest to the "truth."
periodogram near the angular frequency with a Moreover, since, to quote Tukey[8], "... most spec-
period of one year (n/6m. 16667n radians per trum analysis is exploratory in character," it is
month, indicated by the dashed vertical line). This often not the goal to pick one of these estimates as
peak is 10 db above all other peaks, so we should the best estimate, but rather we want to look at

include a term in our model to account for it (if many different spectral estimates to try to under-
there were any doubt as to the significance of the stand our data and to look for interesting features
peak, we could appeal to a formal statistical test in it.

such as Fisher's g or Siegel's test[7]).
Besides the peak corresponding to an annual' 4. Prototype Expert System for Spectral Analysis

period, there are numerous other bumps in the Our first attempt to incorporate intelligence
periodogram that may or may not be due to other into spectral analysis software was to develop a pro-
sinusoidal components. If we assume that the totype expert system. We built the system using
expected variation in the river flow is periodic with computer hardware and software available to us in
a period of one year but is not necessarily 1984, namely, a VAX 750 with primitive graphics ter-
sinusoidal, we would expect to see peaks at frequen- minals running under the 4.2 BSD UNIX operating
cies that are harmonics of 7r/6. These harmonics system with Franz LISP and OPS5, a programming
are indicated in figure lb by vertical dotted lines language for a production system. Such a system
We see that the second largest peak in the periodo- requires that the knowledge of an expert be sum-
gram does occur at the first harmonic (ir/3). There marized in production rules of the general form "if
are no other peaks that seem to be particularly A, B. ... are true, then assert action C." Our first
prominent. (Again Siegel's test can help us judge task was to extract the knowledge of an expert in
the significance of questionable peaks.) this form.

To see if we can identify some components that To do so, we followed an expert through the
may be hidden due to leakage from the dominant analysis of several "typical" time series such as the

peaks, figure 2a shows the periodogram for the data river flow data. We were able to come up with a
after it has been tapered with a 100% cosine taper. "script" that represented the decisions and actions
Again there are lots of bumps besides the dominant that the expert took at each stage of the analysis.
two we have already identified, none of which seem Each portion of the script was initially coded into
to be particularly prominent, production rules. As an example, a production rule

Based upon our examination of the plots in that we could have included based upon the river

figure 1, let's assume a model given by equation (1) flow analysis is "if the data is positive and if the

with K = 2 and wt = k 7r/6 for which IEI is a white variability of the series is proportional to the height

noise process. This is a simple linear regression of the series, then make a log transformation."

model which we can fit to our data using least We learned several things from this exercise.
squares. Figures 2b and 2c show the residuals from First, it is difficult to capture the expertise involved'" 6

this fitted model plotted versus time and offset in spectral analysis using just production rules.
from the beginning of a year, respectively. To con- Much of our script was purely procedural in nature,
tinue the analysis of this data, we would carefully and this was rather clumsy to code with production
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Figure 2: Harmonic Analysis of River Flow Data, 11.

rules. For example, in the river flow analysis, once and examined the residuals. We found it easier to
-we had noted the strong cyclical variation in the log write some of the purely procedural parts of the

'4 of the original data (figure ]a). there was a pro- system in the C programming language.
*cedure that we followed: we identified the frequen- Second, graphical displays play a critical role in
*cies of the sinusoidal components in the model spectral analysis. There are many features of data

*using the periodogram, fitted the model to the data, that are difficult to extract by a statistical measure



but that are readily apparent to the trained eye. To became a straight jacket that forced the user to fol-
obtain this visual information from an untrained low a certain course of actions. In effect, our script
user, the expert system was programmed to carry modelled only what the expert did on the majority tr
out a dialog between itself and the user. It of occasions and failed to capture what was done
presented a series of graphs to the user and queried when some unexpected feature of the time series is
him or her about the presence or absence of certain revealed. Our system is unfortunately just another
features in the graphs. If the user was unable to example of a "feeble prototype" (to use the words of
answer the system's questions, the system would Tukeyt8) in describing efforts to date in creating
attempt either to help the user by supplying exam- expert systems for statistics).
ples or to answer the questions by itself based upon We believe that a useful expert system can be
some test statistics. This approach exploits theWeblvetaausflxprsyemane
somepestr statiscs. Thisiappoach exptsru te n built for spectral analysis but not with an off-the- -
superior human visual ability to find structure in shelf production system such as OPS5. The prob-

leams that must be overcome are the following.

Third, rather simple automatic mechanisms First, a better way must be found to extract infor-
were found for keeping track of an analysis and of mation from graphs. This is critical since so much .-

the auxiliary data sets created during a spectral of the information that an analyst uses comes from
analysis. The OPS5 code and C procedural routines graphs. For example, one possible solution to the
did their numerical work by calling task programs. straight-jacket problem is to enrich the expert sys- -
The collection of these tasks programs is by itself a tem by including many more rules to represent all
primitive system for carrying out spectral analysis. possible conclusions that an expert could draw from
For example, suppose the values of the log of the a graph. Under our current approach, this would

river flow series reside in a data file called "lrf". To mean that the expert system would have to guide
taper this series with a 100. cosine data taper and the user through an exhaustive list of questions
calculate a periodograrn for it (as was done in figure about the presence or absence of certain features.
2a). we would give the following commands to the This is not feasible since such a scheme would
UNIX operating system: quickly exhaust the patience of the user.

taper -p 1.00 lrf lrf.tpr Second, some mechanism has to be incor-
pgram Irf.tpr Irf.tpr.pgm porated in the system to allow it to "forget" certain

The tapered time series and its periodogram would "facts" that it has learned and all conclusions that it
now be in the auxiliary files "Irf.tpr" and has deduced from these "facts." (This problem is
"lrf.tpr.pgm", respectively. (The names of these two called "truth maintenance" in the expert system
files can be arbitrarily chosen.) Part of the action of literature.) This is probably the chief difference
both commands is to place a copy of the commands between statistical analysis and medical diagnosis -
themselves at the end of a special file named for which production systems have been successful.
"hist.tsa". A list of this file at the end of an analysis In the latter discipline tests are performed on a
gives a complete history of all commands that were patient, and from their results conclusions are
executed during the course of an analysis. drawn. The results of the tests themselves are

In addition, the formats of "Irf.tpr" and never really questioned. In statistical analysis, cer-

"lrf.tpr.pgm" are special in that they contain not tain hypotheses are assumed to be true until it

only data values but also a copy of the UNIX corn- becomes obvious that they are wrong. To site the"N

mand that created them. A special task program river flow data as an example, if we hadn't noticed

called "genesis" could then be evoked at any later the relationship between variability and value of the

date to find out how these two auxiliary files were series in figure la, we might have carried out a har-

created. Thus the command monic analysis on the original data. When we got to
the point of plotting the residuals, we hopefully

genesis Iwould have noticed a cyclical variability in the resi-
would yield the output duals that would have lead us back to concentrate

Irf.tpr: taper -p 1.00 1rf lrf.tpr on figure I&a (To quote Chambers(2], "... data
Irf.tpr.pgm: pgram Irf.tpr Irf.tpr.pgm analysis is a more heterogeneous, quantitative and

This simple automatic mechanism has proven quite itera, ive process than ... medical diagnosis...
useful for keeping track of auxiliary data sets and Pnally, creating an expert system that is pri-
could form the basis of a more elaborate data base marily for non-experts vastly limits the number of
management system. (A report that describes this potential users of the system. Experts are not
software system in detail is available upon request.) interested in using it because they want to ignore

The final lesson that we learned is that our all of the "help" facilities. Non-experts may find
approach was painfully inadequate. The chief com- them initially useful, but, after several runs through
plaint from those who observed the system in action such a system, they will rapidly acquire the exper-
was that it was too rigid and did not allow the user tise built into the system and will become bored
to "snoop around" easily when interesting features with using it.
of the data were displayed by the system: the script



5. Display Oriented System for Spectral Analysis statistical tests that are associated with the
In January of 1985. we received four state-of- periodogram, to manipulate the data object under '-

the-art USP machines for use in our project study; and to create a new data object from the
through a grant from the Department of Defense values shown in the plot. In the mock-up, the first
University Research Instrumentation Program with five items in this window show the user in bold
matching funds from the University of Washington. letters the current values of the settable parame-
The availability of these machines and the experi- ters. Thus the periodograrn was calculated from a

ence we obtained in designing our prototype expert demeaned time series and by applying a cosine data
system caused us to design a new system from taper to 20% of the time series. It was then
scratch. Our new approach is to produce a system evaluated on a finer grid of frequencies than the
for spectral analysis that is useful for experts in standard frequencies. The results of these compu-
such a way that it can be augmented with various tations were plotted on a decibel versus linear
"help" facilities for less experienced users, scale. All of the settable parameters can be

changed by moving a "mouse" controlled pointer to
In order to produce a system that is useful to the appropriate place and by either clicking a but-

experts, we need to have a model of how experts do"y"
spectral analysis. Since following a script is obvi- scale or b clickin and enteringa value from the

ously not what an expert does, we have attempted geor by chcnge nte rin a vata te

to come up with a more reasonable model, Our new keyboard (to change the proportion of data tapered
from 20% to some other value). As soon as a param-

model is a rather simple one, namely, that an t, ph w
expert does spectral analysis by carefully exarnn
ing a sequence of graphics displays. At each stage automatically updated.

of the analysis the features that the expert Three augmentations to the plot are possible in
observes in a display prompt him or her to look at this version of the periodogram display. One or
another display to learn something more about the more user-specified fundamental frequencies can
time series, be indicated on the plot by vertical dashed lines, r

With this model for spectral analysis, a rather and any number of associated harmonics can be

simple design for more intelligent software is possi- shown by vertical dotted lines. In the mock-up a

ble. Our first task is to create a set of independent fundamental frequency corresponding to a period of
graphics displays that an expert finds useful. The one year and its first five harmonics are shown. The

expert can make use of such a display as is, but the third augmentation allows the user to plot one or
less sophisticated user can obtain help by request- more copies of the kernel associated with the data

ing a list of features that he or she should be look- taper. This option allows the user to identify peaks~~in the periodogram that are due solely to window ..

ing for. Alternatively, the user could go though an lege. that a s o

" interactive "miniscript" that refers to only the one leakage.

display at hand and that is designed to force him or A list of all data objects in the current analysis
her to note as much about the time series as possi- is given in the data objects window. The first data
ble from that display. Anything that the user learns objects in the list are those that are being examined
about the time series from such a miniscript can be in the current display and are marked "active". For
stored in a data object that represents the time the periodograrn display there is only one, namely,
series. (For our purposes we can define a data the data object that contains the log of the river

, object for a time series as a computer flow data. The user can manipulate these data
representation of both the values of the time series objects and create new ones by selecting (by means
and all other information that is known or has been of the "mouse") one of the final three items in the

* deduced about the series.) "goodies" window. The item "make new data object"
To clarify these ideas, let us look at a mock-up allows the user to create a new data object from the

of one display in our proposed system (figure 3). values plotted in the graphics window. The "add

Each display consists of one or more graphics win- comments" item lets the user add any comments

dows and four "mouse" sensitive windows to control desired to any of the data objects in the current
what is visible in the graphics windows and to allow analysis. Finally, the "examine data object" item iswth use n toher dsa t mo used to look at all the auxiliary information that has,. the user to advance to other displays. The m ock-up b e t r d a o g w t h c u l d t a u s

shows the periodogram display as it would be been stored along with the actual data values.
applied to the data object that contains the log of Included with each graphics display is a direc-
the river data. For this display there is only one tory of all other displays. In the mock-up, after the

" graphics window. It shows the values of the periodo- user is finished looking at the periodogram display,
gram for the time series versus frequency. he or she may select one of six graphics displays to

The "goodies" window allows the user to do see next and may optionally choose any of the listed

several things: to reset parameters that control data objects to serve as the input to that display if

exactly how the periodogram is calculated and plot- he or she does not want to use the default "active"

ted; to augment the basic plot; to perform some daa-bet

,- . ..:.



g.perJodogram of log of river data
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frequency (multiples of ir)

Goodies Directory of Displays 5,
* demean data: yen no * harmonic regression

' "x" units: db linear -wrap around plot
* "y" units: db linear * white noise test
* standard frequencies only: yes no * time series plot
*data taper: cosine; dpss * make transformation (log, etc.)

proportion of data tapered: 207. * periodogram

'show fundamental frequency Data Objects
- show harmonics: 5

show kernel - log of river flow data (active)
- do Fisher's test : river flow data

* square root of river flow data-do Siegel's test

* make new data object
* add comments to data object
* examine data object

Help

# What should I be looking for in this display?
• What do the goodies do?
. Why should I look at other displays?

Figure 3: Mockup of Periodogram Display

For the less sophisticated user, the help window series (as stored in its corresponding data object).
offers three types of guidance. The first help item the system will order the items in the directory of
gives the user a list of features (and examples if so displays to reflect what it thinks would be the most
desired) that he or she should be looking for in the informative displays to look at next.

% current graphics display. The system queries the Each graphics display has a small set of produc-
user concerning the presence or absence of each tion rules that allows the system to order the direc-
feature and stores the results of this interaction in tory of displays and explain to the user the
the "active" data object. The second help item rationale for the order. For example, the fact that
explains in detail (witt examples if necessary) what the harmonic regression display is listed first in the
each of the items in the "goodies" window does. The directory in the mock-up may be due to some
third item in the help window tells the user why he knowledge supplied by the user from one of two
or she might want to look at other displays. Based sources: a previously examined display such as the
upon what display the user is currently looking at time series plot display (where the user might have
and what information is known about the time noted "strong periodic variation"); or the feature

'NI.
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extraction question-and -answer session in the data base that is least dissimilar. (if there are
current display (where the user might have noted several time series in the data base that are close in
that the periodograrn has "one or more prominent dissimilarity, the user could select visually that one

*narrow peaks"). series that he or she feels to be closest to the new

The system that we are designing around this series.)
display-oriented model of spectral analysis cannot What we need to investigate is 1) whether
be called an expert system since it only provides Gersch's classification scheme is adequate and, if
local (i.e., from one display to the next) guidance not, whether we can come up with one that is
and not global guidance. Its chief advantages are: (Gersch's scheme is a tine domain one; there is a
modularity of design (each display is independent of corresponding frequency domain one that we plan
a other, displays); help to the user is added in a to explore); 2) what is the most effective way of tel-

*well-defined way after each display has been ling the user to follow a set of actions in our system;
designed; and the help facilities are non-intrusive and 3) how we can automatically update the data
and can be completely ignored. We also feel Lha base of time series (this will involve some issues in
our design helps alleviate the well-known knowledge machine learning).

* ~transfer bottleneck common to expert systems '-

since here the expert need only answer a few well- 5.2 Automated Creation of Graphics Displays
defined questions to make the system "intelligent" One of the nice features of the S and ISP I

*("What do you hope to learning by looking at that interactive statistical packages is the ease with
graph?". "What other graphs would help you clarify which a user can expand the system by adding new
questions raised by this graph?". etc.). functions of his or her own creation. If our system

is to be widely used, we need to develop some way
6. Future U. rectiona for the user to add new graphics displays. One of us

We are currently implementing the spectral (Kerr) will be exploring this problem of a "program
analysis system described in the previous section. writing" program in a complex system.
Alter the rudiments of the system are in place and
a prototype of the system has been critiqued, we 6.3 New Data Analysis Tools

* plan to incorporate as many graphics displays as In a future reportf 5] we will give some answers
* ~'time, resources, and interest allow. We also plan to to the fourth question of the introduction, namely,
aaugment the system by exploring the following "what new tools are available for spectral analysis

research topics. on a state-of-the-art workstation?". We have several

6.1 lasifiatin ofTim seiespromising ideas to exploit the unique graphical
capabilities of these machines.

We recognize that there are many users who
require more global help than our proposed system 7. Acknowledgement
can give them. One possibility to provide such help This work was sponsored by the Office of Naval
is suggested by Schank's cognitive model approach Research under contract number N00014-81-K-0095. --

to Al problems, in which he defines understanding
as the ability to relate the problem at hand to one's Rfrne
past experience. Gersch[4] has recently published Rfrne
some results on nearest neighbor rule classification 1. P. Bloomfield, Fourier Analy'sis of Time Series:
of time series. His idea is to have a data base of An Introduction, John Wiley & Sons, New York
time series and a measure of dissimilarity between (1976).
time series (he used the Kullback-Leibler informa- 2.JM.Cabr,"oeTugtonEpt
tion number). Any new time series is then classified Software, C m pre, "S ee huht n Experitcs

by comparing it to each of the time series in the Pofoced" Cofptert Sci posiu ond St thic:

data base. The nearest neighbor to the new time Ptrfceig (Marche 1981). psim n h
series is defined as that time series in the data baseInefc(Mrh18)

which is least dissimilar. 3. W. A. Gale and D. Pregibon. "An Expert System
Teeideas can be used to produce global help for Regression Analysis." Computer Science

These and StatListics: Proceedings of the 14th Sympo-
for a user. The first step is to have an expert do a sium on the Interface (July 1982).
spectral analysis on a large number of different
time series. For each time series, the expert will 4. W. Gersch. "Nearest Neighbor Ruler
use some combination and ordering of graphics Classification of Stationary and Non-stationary

displays and will create a certain collection of data Time Series," pp. 221-270 in Applied Time
objects. When an inexperienced user comes in with Series Analysis 11. ed. D. F. FindleyAcademic

a new time series, it is classified using Gersch's Press, New York (1981).
scheme, and the user is told to follow the actions 5. D. B. Percival, A. .Buja. R. D. Martin. E. 0.
the expert took in analyzing the time series in the Belcher, R. K. Kerr, S. D. Yee, and C. 0. Hurley,
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Analysis," 192nd Western Regional Joint Meet-
ing of the Institute of Mathematical Statistics
and the Biornetric Society (June 1985).

6. M. B. Priestley, Spectral Analysis and Time
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7. A. F. Siegel, "Testing for Periodicity in a Time
Series," Journal of the American Statistical
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ARTIFICIAL INTELLIGENCE AND STATISTICS:
DO WE HAVE THE CART BEFORE TIhE HORSE? e

William F. Eddy

Department of Statistics
Carnegie-Mellon University

The last two decades have seen a growing interest in production systems, or

rule-based expert systems. Originally, production rules were statements of the form

"if A then B" and reasoning in these systems was simple (albeit tedious) and exact.

Recently, a number of rule-based expert systems have been used on inexact reasoning

(that is, on uncertain knowledge). This talk will provide a comparative review of

some of the best-known methods of inference used in expert systems and will argue

that most of these methods are hopeless as models of human reasoning. '

BAYESIAN IMAGE RESTORATION

Stuart Geman

Division of Applied Mathematics
- Brown University

We develop a class of probability image models that accommodate smoothness,

edges, textures, and other, "higher level", image attributes. These are Markov

Random Fields with a three dimensional graph structure. The "bottom" level of the

graph is the pixel process, corresponding to the actual digitized image. Successively

higher levels correspond to increasiningly complex attributes, including locations

and orientations of edges, line segments, and polygonal regions. The constructed

distribution is employed as a prior distribution on images, Given a degraded

picture, we seek the image that maximizes the posterior distribution (the so-called

MAP estimator). Maximization is performed by a highly parallel computational

technique called stochastic relaxation.

We will present the results of experiments with some simple pictures. These

demonstrate: (1) parameter estimation for the prior; and (2) blure and noise

removal, segmentation, and boundary-finding at extremely low signal to noise ratios.
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Knowledge Representation for Expert Data Analysis Systcmns .. ~

Ronald A. Thisted

Department of Statistics
The University of Chicago

Chicago, Illinois 60637

An expert system is a computer program which performs a task at the level of performance of a human
expert with some years of experience at the task. In this paper we examine what it would mean for a
computer program to be an expert system for data analysis, why there is some hope that such a system
could be developed, and what makes an expert system different from other sorts of statistical software
with which statisticians are familiar. Standard programs implement algorithms for computations on
data, which in turn are represented using data structures. The choice of a suitable data structure often
determines the form an algorithm will take, and such a choice may be crucial to the efficiency or feasi-
bility of the computation. In expert systems the primary "data' are the fact, heuristics, and strategies

used by experts to solve problems in their domain of expertise. An appropriate form for representing
statistical knowledge is a prerequisite for a, successful expert data analysis system. We examine some9
alternatives for knowledge representation in this context. Quite apart from its potential contribution to
expert systems, such investigations shed light on the nature of data-analytic expertise and how such

1. What in an expert system? process. This last attribute of having an explanation
facility seems crucial and, to some extent, defining.

This paper is an introduction to the issues involved in
designing and implementing an expert system that might Soexapsofucsfleprtytmwhh e
be useful in data analysis, with particular attention to consulted by experts in practice, are DENDRAL
aspects of the problem of representing statistical (Buchanan, Sutherland, and Feigenbaum, 1969; Lindsay,
knowledge in a form Iuitable for computation. Expert et al, 1980) which identifies organic chemical compounds
systems differ in substantial respects from "ordinary" based on spectrographic data; MYCIN (Shortliffe, 1976)
statistical software systems, and the differences are fun- which diagnoses infectious hlood diseases; and CADU- %
damental to an understanding of the role that expert CEUS (Pople, 1981), a system for diagnosis in internal
knowledge plays. medicine.

1.1. General definition and examples. 1.2. Expert systems for data analysis

Expert systems are defined partly in terms of what they What role could an expert system play in the practice of
do, partly in terms of how they do it, and partly in statistics? Several different "role models" have been sug-
terms of the principles that led to their construction. gested, and they lead to very different kinds of pro-
There is some agreement (see Chapter 2 of Ilayes-Roth, grams, performing very different kinds of tasks. Oldford
Waterman, and Lenat (1983), for instance) that an and Peters (1984) developed a prototype expert system
expert system must perform a complex task at the level to recognize colinearity in regression problems. This
of a human expert who has several years of experience at program was designed to be the Guardian of the Novice,
that task. Several attributes shared by expert systems in effect, to prevent the unexperienced user of regression
have emerged. An expert system must embody expertise, from stumbling blindly into hazardous terrain. The
in the sense that it is based upon rules which correspond REX system of Pregibon and Cale (1984), on the other
to what human experts do; it must employ symbolic rea- hand, might be termed a Guide for the Perplexed. REX
soning, rather than purely numerical computation in was designed to guide its user through an appropriate ,

solving problems; it must exhibit intelligence in the sense regression analysis, in effect taking on the role of instruc-
that it can reason from basic principles - and can recog- tor as well as expert. Both of these systems sssume

*nize which principles are applicable - rather than being users with little background in statistics or data
able to deal only with situations narrowly specified in analysis.
advance; it must be dealing with a problem of sufficient
complexity that human experts are generally required; it Another role that experts systems could play in statisti-
should have some ability to reformulate a problem from cal work is that of an intelligent assistant, with the
the form originally presented into a form more suitable knowledge required to examine all of those things which
for analysis; and finally, it must have some ability to the competent data analyst knows he or she should look
reason (or at least to explain) about its own reasoning at, but for which there is often little time (or patience).
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On this view, a program with quite limited intelligence analysis should be, or whether a proposed step is '-

could be widely useful; it would not even have to be appropriate, would require not only monitoring the
able to deal with problems, it would simply have to be sequence of commands entered by the user, but also
able to recognize the problems and bring them to the some ability to reconstruct the reasoning behind those
attention of the expert human statistician. In the commands.
absence of a plea for help from the program, the statisti-
cian could assume that no difficulties requiring special The user-system interaction is also different. Statistical
expertise were present, freeing him or her to devote more computer packages are designed to give lots of answers
time and energy to problems of greater difficulty or com- for a few economically worded questions generated by
plexity. the user. The expert systems discussed here, on the

other hand, are more adept at raising questions rather
A linal role model for expert systems in data analysis, than answering them. In effect, their role is to note
perhaps the most ambitious of all, is that of an appren- aspects of the data set that may render all or the
Lace consultant. In this view the system would interact answers produced by a standard package inappropriate,
with a practiced, if not expert user, say a PhD student misleading, or meaningless.

* in statistics consulting with a scientist on a problem in
*data analysis. It would "look 'over the shoulder" of the Finally, the internal construction or expert software is

user, making suggestions and noting possible problems. likely to be quite different from that of standard statisti-
The goal here is once again to assist a user with some cal software in terms of control structure. While flow ofrL
background in statistical analysis to make a better, more control in the latter is often a matter of sequential invo-

*thorough analysis, and to bring to the fore situations cation of routines explicitly or implicitly requested by
which may require more expertise than either the pro- the user's typed commands, the flow of control in expert
gram or its user possess, systems will depend more upon the characteristics of the

particular data set under consideration. The internal
The statistical consulting program at the University of construction of the expert system will be suitable for
Chicago is not unlike that at many universities. Under more symbolic than numerical computation (although
the direction of two faculty members, all PhD students today's numerical computations will necessarily be
must participate in statistical consulting with members invoked as subroutines to obtain intermediate results),
of the university community, to whom consulting ser- which suggests that the code will include substantial
vices are offered without fee. A major problem is that chunks of LISP or Prolog. The greater the extent to
the program directors are booked with a solid three-week which the data themselves determine the statistical com-
backlog of cases. Many of these cases turn out to be (for putations to be applied, the more one's view of what
the statistician) routine. The possible role of expert sys- constitutes a statistical algorithm becomes distorted.
tems here is to kill the three-week backlog by not wast- This leads us to some consideration of the roles played
ing the human expert's time on routine matters, while at by data, algorithms, and knowledge in expert systems.
the same time, providing some assurance that majorh
difficulties are not simply being overlooked.

*In the remainder of the paper, the intelligent assistant 2. Algorithms, data structures, and knowledge bases.
and the apprentice consultant models will be of primary
interest. The essence of standard programming as we understand

it today is neatly summarized in the title of Niklaus
* Wirth's book, Algorithms+Data Structures= Programs.

It is now well-understood that the choice of data struc-
1.3. Expert data-analysis systems differ from standard ture can greatly influence the suitability of alternative
statistical software. algorithms for particular tasks, and can also greatly

affect the performance of algorithms, and even their
A natural question that arises is whether expertise could feasibility. (For instance, it is rather difficult to carry
be built in to existing statistical packages such as out a binary search in a linearly-linked list.) l
Minitab, SAS, SPSS, and the like. To answer this ques-
tion it is important to understand how expert software In expert systems we may have a parallel formula:
differs from the standard software that statisticians are 'Knowledgei lnference=Expertise," reflecting the
used to writing and interacting with, common-sense notion that experts both know s lot, and

know when and how to apply their knowledge. TIhe
Statistical computer packages increasingly offer on-line term "knowledge" as used here represents the collection
"help" facilities, but none of the models of expert sys- -of facts, heuristics, and strategies that experts use to

tems outlined in the previous section could adequately be solve problems. A knoudedge base is a structured collec-
built upon these facilities. Today, in order to receive tion of sy mbolically- represented expert knowledge.
help, the program user must know that help is needed9
and must know when and how to ask. In return, the The power of an expert system depends on its knowledge
program generally can give assistance only so far as the base. It must have adequate coverage, that is, it must
syntax of the program's command language. Advice contain facts, heuristics, and strategies sufficient to cover
concerning what the next step to be taken in the a the wide range of problems in its domain. It must also
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have an adequate representation for that knowledge, based on facts and methods which they have assimilated
suitable for an appropriate search algorithm to find and refined over time, whether they have done so cons- V
those components of the knowledge base which are ciously or not. Experts often cannot articulate the
relevant in the current context. There are several relevant knowledge they possess which they use on a
schemes for knowledge representation that have been daily basis, and what they do say they know may in fact
developed in the Al literature, of which a few seem to be conflict with what they actually use in practice. Many
particularly well-suited to knowledge about data experts are ill-prepared by training or by inclination to -,.-
analysis. articulate the knowledge they use in rendering expert

judgments accurately. This makes it difficult to teach
The most promising candidates are production systems new people to become experts in the field.
(discussed by William Eddy and by Gail Gong in their
presentations in this session), augmented transition net- At this point enters the knowledge engineer. The term
works, and frame systems. Production systems are col- has been coined by Al workers in expert systems to
lections of rules ("productions") of the form, "if denote an individual who is trained in expertise elicits-

" condition-A then action-B." Taken together, the collec- tion and articulation, a psycho-analyst of expertise.
tion of productions can be thought of as defining a tree Knowledge engineers typically are grounded both in
and a way of traversing its branches. In the data- computer science and cognitive psychology, and what
analysis context, each node in this tree corresponds to a they do is to work with a human expert in his or her -
stage in the data analysis, and moving from one node to domain of knowledge to elicit, and then to fashion a con-
another would generally correspond to performing a crete representation of, the knowledge that the expert
small piece of the data analysis. Augmented transition brings to bear to solve difficult problems that arise in the
networks can most easily be thought of in this setting as expert's domain. There is a shortage of people with the
adding information to the tree which records the rela- qualifications and experience to do this work.

* tionship between any two -connected nodes. Finally,
*frames are quite general ways of organizing knowledge; Note that the knowledge engineers themselves are

both production systems and ATNs can be embedded in experts in a field, too - that of knowledge elicitation. To
the frame paradigm. In our setting we can think of a distinguish this top-level domain of expertise from the 6r.-
frame as being a set of productions which preserves the domains of experts to which it is applied, following Gale
context in which the productions are employed, and Pregibon, we refer to the top-level area as the it sub- 0',-

ject domain, and the areas of application we refer to as
The inferential machinery, or the method by which the the ground domains.
knowledge base is searched to apply to a situation at.
hand, is related to the adequacy of coverage and ade- Statistical consulting is very similar to knowledge
quacy of representation of the knowledge base in much engineering. Statistical consultants are expert in statisti-
the same way that algorithms are related to data struc- cal analysis (the subject domain), and they apply their - -

tures in conventional programming. With these ideas as knowledge by collaborating with experts in other fields
background, we now turn to consideration of some issues of inquiry (the ground domains). Moreover, the first job
involve in building a suitable knowledge base for data of the statistical consultant is to help the client to arti-
analysis. culate what he or she knows that is relevant to the prob-

lem (but may not have realized consciously). We help
our colleagues to question assumptions they make impli-

3. Knowledge engineering. citly. We help them to turn from matters of little conse-
quence ("Do I use n or n-I here?") and to focus on those

From the scientific standpoint, knowledge is representa- matters that turn out to be essential ("Can you
tional, in the sense that we cannot say that we know remember anything at all about the experiment that
something (or that we understand a phenomenon) until might distinguish these two halves of the data?" "Oh,
we can represent it using a model which embodies what yes. They were run in different years by different techni-
it is that we think we know. One of the major benefits cians."). We know that the questions people bring to us
of publishing scientific papers is that in the act of writ- are usually not the appropriate questions which ulti-
ing, authors are forced to come to grips with the mately get addressed, and we assist in the process of get-
difficulties, inconsistencies, gaps, and inadequacies that ting the right questions formulated so that they can be
were simply not apparent to them before. The theorem addressed.
whose proof was sketched on a napkin may prove to be
more delicate than first thought; the iron-clad argument As a consequence of these similarities to knowledge
may reveal a chink in the argument. What is more, the engineering, statistics as a discipline has something to
concrete representation makes it possible to transmit contribute to artificial intelligence work in general, and
this knowledge to others in a way that is more feasible to expert sxstems research in particular. We have been
and more certain than through observation and appren- about parts of the knowledge engineering business for at
ticeship. least half a century. (At the same time, however, we

have devoted little attention to understanding very
A concrete representation is not a prerequisite to having thoroughly how we accomplish what we do in this enter-
knowledge, however. luman experts by definition pos- prise.) Statistics can contribute some of the basic ideas
sess abilities which other; do not, and these abilities are and methods of data analysis, experience in statistical
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_ consultation, and techniques for elaboration and for This said, we can begin to outline the areas in which

display. It may even be that, despite the shortage of research is likely to be fruitful. Data analysts consulting
trained statisticians, we may even end up contributing with scientists expert in their (ground) domain are
bodies to knowledge engineering front (since the pay is general-purpose scientific detective/psycho-analysts.
better). They proceed by asking questions, and often these ques-

tions are suggested by what they see in the data. The
Constructing an expert system which embodies answers to these questions lead both to alternative ways
knowledge about data analysis or about statistical con- of looking at the data and to new questions. The impor-
suiting involves much that would be required in an tant work of the consultant seems to get done through
expert system to construct expert systems, in that the the questions he asks of the client. It is important, then
ground domain for the system (statistical consulting) is to investigate how these questions are structured, what
itself a high-level domain of expertise which can in turn plans of inquiry are adopted, and what it is that leads to
be applied in a number of ground domains. The current the formulation of these plans.
effort by Gale and Pregibon (1984) to construct Student,
an expert system capable of learning to do data analysis The natural way to learn about these issues is to observe
in a variety of contexts by working through a sequence experts at work (as knowledge engineers do), perhaps
of problems in those contexts, is in effect, an expert sys- even to conduct experiments involving them. Some
tern for building expert systems. It is an ambitious years ago, I received a telephone call from a colleague in
endeavor, which nonetheless shows signs of great prom- pediatric neurology; he had a quick question. "I can't .
ise. remember," he said, "whether I should use standard

deviation or standard error. Which do you suggest?"
How should we go about the process of studying what We began to talk, and over the course of a few weeks, it
knowledge we bring to bear on statistical problems so became clear that the answer was, "None of the above."
that we can construct a suitable representation for it? We ultimately used a three-factor unbalanced mixed
P'regibon and Gale and others have used the device of model with covariates-and we learned more about the g
constructing worked examples, carefully annotated, and disease process under study by doing so. Unfortunately,
diaries of the analysis process. These devices can be cou- I have no idea what sequence of events led from the
pled with explanation to colleagues who can be expected innocuous question on his part to the ultimately more
to ask penetrating questions when the reasoning process complex solution at which we arrived. This is the process
is not entirely clear, and can be assisted by automatic which requires scrutiny and study.
means such as statistical packages which keep "journal
files" of the sequence of commands used in analyzing a
data set. 'l'histed (1984) has described the role that 8. Representing knowledge about question-asking.
computing software environments can play in learning
about how data analysts behave and what strategies What must be considered in building a concrete , .
they adopt. On this view, a considerable amount can be representation for the knowledge about question-asking
learned about the process of statistical analysis without that data analysts seem to possess and use to such good
actually attempting to implement any of it in an actual effect? Questions are asked both of the data and the
expert system to be run on a computer. A similar view expert in the ground domain. These questions often
has been expressed in the artificial intelligence literature alternate, the data suggesting questions to ask of the
by Doyle (1984). client, whose response suggest new questions to ask of

the data. We can distinguish four levels of questioning:
asking questions of the data, asking questions of the

4. Statistical consulting as a model, experts, using answers to formulate questions, and ask-
ing questions about questioning. We now turn to just

A few words are in order concerning knowledge about the first of these levels, as it is the level which we are
statistical consulting as a basis for expert systems in currently closest at being able to explicate. Some of the
data analysis. The questions of what facts consultants issues raised in the remainder of this section are dealt
know, what heuristics they employ, and the strategies with more thoroughly in Thisted (1985).
that they adopt are all understudied problems. There
has been a surge of interest within the statistical com- "Asking questions of the data" can be broken down into
munity in the last five years on the topic of teaching sta- three rough stages which together describe a single step
tistical consulting, and the resulting reflections on the in the analysis of a data set: focus, selection, and
process of statistical consulting are valued contributions transformation/reassessment. In focusing the analyst
to this secondary endeavor of building consulting exper- concentrates on a relatively small subset of the data,
tise into usable computer systems. At the same time, perhaps a handful of variables (or cases) of interest at
the emphasis has been more on apprenticeship and the moment. Selection is the process by which a collec- F -

supervision of trainees rather than on the special skills tion of appropriate transformations of the data is
that expert data analysts have and how those skills identified; transformation here meaning nearly any corn-
might be transmitted. We know of no study, thorough putation on the data set, including computing a regres-
or otherwise, of the process by which successful consul- sion (producing estimated coefficients, fitted values, resi-
tants in data analysis approach their work and achieve duals), computing and displaying a scatterplot of two
their results. variables, constructing a confidence interval, etc. 4 4
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5%Finally, transformation and reassessment is the process grams before we appreciated the role of data structure, .
of carrying out the computation, and then reassessing top-down construction, information hiding, loop invari-
the situation. Reassessment may lead to a change of ants, and the rest. Indeed, much of what we know
focus, to a change in the class of appropriate transforma- about these ideas was learned through reflection on what
tions, or to new questions of the client, made some programs better than others and some pro-

grammers better than others. Even if no generally use-
ful expert systems are built, we may still make great

6. On carts ad horses, strides in improving the general quality of data analysis
because we better understand what goes into data

Bill Eddy's opening remarks were entitled "Artificial analysis of high quality, so that we can convey it mor
intelligence in statistics: Do we have the cart before the directly and more successfully to budding data analysts.
horse?" This provocative title prompts a few observa-
t tions about the Al cart and the statistical horse. At the same time, much of expert systems work is

,. closely related to what we think data analysts actually
There is no cart. It should be clear from the outset do. Both good data analysis and successful knowledge

, that expert systems for general use in data analysis don't engineering involve drawing out an expert, evoking what
- exist, although a few demonstration systems have been he knows but does not say about a problem. Both the

built. Moreover, there is no general methodology for statistical consultant and the knowledge engineer must
building expert systems. And at least for the kinds of be adept at asking the right question which brings into
systems we have been discussing, there are no general- focus the critical aspect of what is being done. Thus,
purpose expert systems of any kind which incorporate work in expert systems for data analysis may well bring
the higher-level meta-knowledge of a domain which new paradigms for knowledge articulation to the atten-
interacts with a variety of ground domains. tion of workers in Al, and at the same time may help to

make the techniques of knowledge engineering needed to
There is no horse. What makes a particular data construct general expert systems more readily available.
analysi3 a good one is little studied-and even less under- Acknowledgement. This material is based upon
stood. At the moment, we teach data analysis and con- research supported by National Science Foundation
suiting by example, and we hope that some of it will rub Grant No. DMS-8412233 to the University of Chicago.

* off on our students.
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PRODUCTION SYSTEMS AND BELIEF FUNCTIONS

Gail Gong

Statistics Department
Carnegie-Mellon University

Expert systems are computer programs which use domain-specific knowledge to make inferences about
problems arising in that domain. Some expert systems must handle knowledge which Is uncertain, and a
popular tool for handling such uncertain knowledge has been the adhoc uncertainty factors found in MYCIN.- -

We explore another tool, belief functions, introduced by Art Dempster and Glenn Shafer.

1. Production Systems A rule contains a left-hand-side (LHS) and a right-haid-side
Suppose a customer wants to buy a VAX computer. He has (t-IS). Tile 1IIS is a set cl conditions which must be sati!;i,.1"
some idea of what he wants: his VAX should have so much before the conclusions or actions in the RHS can be accepted.
disk space; it should support so many micom lines; he wants it To get an idea of how this production program might run,
to connect to this kind of tape drive and that kind of printer; suppose that each customer order results in a meeting. At the
and so on. ttowever, there are still many details that need to meeting are representatives of the rules (one representativebe decided. What kind of wires should be u.med to connect this for each rule), a secretary, and e arbiter. The secretary

to that? What kind of boards are necessary? The customer begins by writing the specifications of the customer order on
needs a VAX expert to insure that the order is consistent and the blackboard; each representative watches carefully to see it
complete. the LHS of his particular rule. has yet been satisfied by the

specifications on the blackboard; when a representative sees
Actually, DEC has a computer program that configures VAX's. his rule satisfied, he signals the arbiter; more than one rule.
t he program, called R1, uses production rules. An example of can be satisfied at any one instant, so the arbiter must decide
a production rule might be: which of the satislied rules can "fire"; the secretary changes
DISTRIBUTE-M-DEVICES-3 the specifications on the blackboard according to the RHS ofthe fired rule. As more rules are fired, the blackboard changes

IF: and other representatives find their rules satisfied. For each -

set of conditions on (tie blackboard, a representative can have,'
THE MOST CURRENT ACTIVE CON tEXT IS his rule fired at most once. The meeting continues until no

DISTRI13UTING MASSG3US DEVICES representative finds his rule satisfied. The blackboard at the

end of the meeting describes the completed specifications of
AND THIERE IS A SINGLE PORT DICK DRIVE THAT the customer order. :

HAS NOT BEEN ASSIGNED TO A MASSBUS

In R1, the rules and condition are assumed to be
AND THERE ARE NO UNASSIGNED DUAL PORT deterministic. Either the customer wants a printer or he

DISK DRIVES doesn't. Given that he wants a printer, he may or may not

need this kind of board, but if we have enough conditionsAND THE NUMBER OF DEVICES THAT EACH about what he wants, we can be quite sure of what kind of
MASSBUS SHOULD SUPPORT IS KNOWN board he needs. In, say, a medical diagnosis problem, we are

often not sure if the patient has a particular set of symptoms.
AND THERE IS A MASSIUS THAT t IAS BEEN Also, deterministic rules are harder or impossible to obtain.

ASSIGNED AT LEAST ONE DISK DRIVE AND We cannot say that a person with this list of symptoms Is
THAT SHOULD SUPPORT ADDITIONAL DISK surely to have this disease. The best we can say Is that given

* DRIVES these symptoms, the person is likgty to have this disease. The
problem then becomes that of expressing and reasoning with

AND THE TYPE OF CABLE NEEDED 10 CONNECT these uncertainties.
THE DISK DRIVE TO THE PREVIOUS DEVICE
ON THE MASSBUS IS KNOWN

The computer scientists are convinced that using probabilities
THEN: is too hard if not impossible, so they have turned to ratller

adhoc procedures, such as the certainty factors found In
ASSIGN THE DISK DRIVE TO THE MASSBUS MYCIN. Recently, however, some computer scientists have

.|
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discovered belief functions, which were first proposed by Figure 1.
Dempster, and later developed by Shafer. (See Shafer (1976).) A = "It rained on Monday." i

Belief functions are appealing to the computer scientists B = "The gardener had muddy boots."

because they ale less restrictive than probabilities, they can C = "The door was unlocked."

express ignorance, and they have some mathematical D = "The footprints belong to the gardener."
backing. Several artificial intelligence groups are trying to E = "The fingerprints match those in the gardener's toolshed."

implement belief functions into their expert systems, and this F = "The gardener is guilty."
is reason enough for statisticians to become actively involved

in belief functions for expert systems. r, : A -> B
r 2:13&C.->D-.
r 3:D .)F "*

2. A Small example r4 :E'>F

To introduce the ideas of belief funclions and their F

relationships to production systems, we will consider the / "

following tiny example. This is not, of course, a real expert 0 F

system, but it uses if-then rules to hell) obtain a desired I I ..

conclusion.
C &BC B '

Suppose I go away on a trip for a week. During that time, I am
forced to leave my house unoccupied and unguarded. Upon A

my return, I discover that the television set is missing. I also

notice that there are dried-up muddy footprints leading to and
froin the back door. Who was the thief? I

newspaper are perhaps somewhat reliable, but inispints are
The house is surrounded by clean sidewalks, so an ordinary possible; and I'm not sure whether I checked the back door

The ous issurr'jned y cean idealk, soan rdiary before I left because it is used so infrequently.
passerby would not have had muddy boots unless he had
been walking in the garden and unless the garden was wet..
An idea flashes. Maybe it was the gardener. When I left on Our goal is to quantify our uncertainties both of the left-hand-
Snday, t gd w dside conditions and of the rules and then be able to calculateSnathe garden was dry. The gatrdener comes on
Monday. Therefore I construct the rule: If it rained on the resulting uncertainties of the right-hand-side conditions.

Monday. then the gardener ha l muddy boots, That is, if we have a measure of belief on A and a measure of
belief on the rule A -) B, then what is our measure of belief on

I don't know my gardener very well, but I have the feeling that B
he is not a professional thief. lie would not have entered the
house had the door been locked. I construct another rule: f 3. An Irtreduction to Belief Functions
hgAoardener h ddybts,.gd the gewta, The material in this section is front Shafer (1976) and Shafer
I._epn.ih foo belong to the elardlener9_. Another rule that and Tversky (1984). A fiame of discernment 0 is a set of all

obviously follows is: If the loolrints..belono to the hardener. possibilities under consideration. For example, if we were

then the gardener gilty. concentrating just on the question of whether or not A were

true, we might consider the frame
I might have some other evidence that corroborates with the

foolprint evidence. Fingerprints are found in the house that 
0

A = (so ad'

do not match any of the fingerprints of the members In my where a. denotes "A is not true", and a, denotes "A is true".

family. I construct one more rule: If the fin( nrrints match The frame of discernment can be much more complex of

those in th ardener's toolshed, then the uar lener. isguiy. course. For example, if we were concentrating on the rule
A -> B, we would consider the frame

Figure 1 summarizes the four rules. 
0 ,, = f(ab):a = 0.1;b = 0.1)(

where a = 0 or I according to whether A is false or true, and

F We emphasize here that we are allowing for the possihility that similarly for b and B.
each of the:;e rules needs not have t0 percent certlainy of

hohling Evern though it was raining on Monday, we allow the Just as it is easier to introduce probabilities through
prrs.a;ihih' trIh;mt the gardener did riot have mnuddly hoots, probability density functions, it is easier, here, to introduce *.

Perhaps, it wa s raining so hard that lie decided to wait until belief functions through biasic.r._abilit__.ignmcnt Shafer
Thursday to work on the garden. Also there is uncertainty on defines the function m : 0 1).,] to be a basic probability

the tellhand-side conditions. 1he weather reporl3 in the assignment if

% Oo
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2: inA) = 1. Monday should give some support on (all. The amount ofgAc) support dtepends on the flltowing thought experiment.

*We caill thre subsets A of 0) which have pc:itiive rnivatue

d, si niiis. nlAl) 0, tile (gpgal vem .n s ot in. The togM Imagine a sometimnes- reliabte truth machine. tn its "truth"

Pirrulrmn. bet -2"' > 10, 11,. associated with m is detined by mode, it telts the truth, but in its 'unreliable mode" it
P generates totalty random statements which give us no added

Bet(A) = X infO). information. The probability of being in fle truth mode is s.rn BA white the pobabiity ot being in the unretiqhie mode Is I-s.
[4~'-1,- ussiog the properties or interprelatioos of basic Thre truth machine spouts out "A is true". Shafer and Tversky

po)it,i, ,s'iiglinenrs and belief tunctions, tet us consider a propose that !he resulting bt-liet function should be the simapte

si ini"'ialevainple. support function witti mass s on the focal elemient A. to the
= gardener example, we think of the newspaper as the

(0 82' 03). sometimes -reliable truth mactine with probability s of tetling

nif,6 2~) = .3 the truth, and probability 1-s of printing a totally random

M(01,0r
8 ) = .8statement. The newspaper reporting "Rain en Monday" leads

mO,3) 4 to a simple support function with mass s on the focat element
mit)) = .12.

rJ it, it unl-ko probability density functions, the domain of (a.
in s u r'~lnlodto rngetois.als th foal leri~it5 re ;hater and Tversky propose other thotight experiments for

notr0 in t Woe trink of our belief as being dtivisible into belief functionz; which are more comapticated tthan simple
chufr s The mn above says we put 32 of our belipf en 8, .08
of 91' ina,.s 3s tree to wander" among the elements in support functions We wilt not describe them hrere.

(1;i) and so nn, A mnass which is tree to warirler 00 alt of 0
reeiigorane. relespeAncmfucto hich putmas alt te on Monday. A neighbor recalls that it rained on Monday. We

mreI ifrna-ne. Te o sec ific an mucin ofic puass itse fmatunuthtweav othrpcefeidceoran
tota An n fuctio whih pus vould fike to combine our evidence supplied by the

Is 'asa sirelonretect totl crtanty or hat newspaper with that supplied by the neighbor. We wilt usa

singleton. Dempster's combination rule. Given the basic probability
assignments in, witth focal-elements AV.. Ak n m2 wt

The in function dlercribes the measure of belief that we local elements B, Bil if K. given by

ceommit exactly ma each set; the otI amount of belief K= (I m (A I 1) Pd
committed to each set is described by the associated belief Ai 013 = tfm
function: is positive. then the belicf function resulting tromn the D~empster

Bef(O,) - .32 combination has m function in = m, + m12. defined by
Bel(8 1.0 2 ) = .40 rofA) =K X in (A,)ln2(a ).

Bef(,,0) =.80An. = A
Bel() -.00The formula appeals more complicated than the concept. To

For example, the belief an (O02) is gotten my adding the m Iflustrate, suppose
on (0) lo ttie m on (0,,02), these two sets beiing the subsets (0,8.,
of (48102 ) with positive m values. The mass .40 is thre amountIo=(0, 20)

ot mass that is confined somewhere in (9O2), and it in,(OV0 2 ) .40

-. repre';eirts our total belief on (8102). M1 (o) = .60

Whti dto the nuimbers .32 or .08 neami? fIn answer to this
* rIlii.stiorl, Shafer arid Tverslry (19J34, p. 23) propose seine M2 (01103) = .08

thlmlhit experiments. Thre simplest involves simple support 112(0 2

tiji iioriS whose in functions have tme form The Dempster combination mr = if m2 is easily gotten by

nr(A)= 5.considering ltre following table.
n.(t) = 1s,

"ilt're A i7, a subset of 0 and 0(< s( <I. We describe such a
I.Ilel t011C1,0111 as the sirmple support function with mans; s on

Zh Iccal eleienco A. Simrple support fuoclicrns result fromn a
vecl- of evidence, that offers Faupport for a sirngle subs(l A. For

q amlple, in ltre garrieirer examrple, if we are coirceniralinq our
..tpr.:on on whether or not A is true ( so that we are looking ait



mi ~ As in the example above, K, = 1. However the set (a I) is the

je 1,e') 0 result of several distinct intersections of focal elements of
.4nm with local elements of mflkh' and so getting the IF

S-Dempster combination mn = mrnes 8 mfleighbor requires a
* {ee 3) ~ {O.93)summation:

.80 .32 .48 m~a,) =.18 + .42 + .12 =.72

mn2  -- m(OA) =.28

O 8118e2) 0 The corroborating pieces of evidence have resulted in a fairly
.20 1.80 1.12 1high support for (a I), even though the individual pieces of

eviden ce each gave only ineager support.
Since there are no null intersections of focal elements, K =1

Also each intersection of a focal element of in with a focal
element of in leads to adistinct set, so we can just read offm 4.Ble uctosfruceti ue
from the body of the table: Of the goals slated at the end of Section 2, we have discussed

m{0, 1 .32 methods to attain our first goal, to quantify our uncertainties in
mto'08 0 the lpft-hand side conditions. We now consider the second

12) '
m{01,0) 3 .48 and third goats, to quantity our uncertainties of the rules

m(O) =.12 themselves and to propagate the uncertainties to the right.

It is instructive to compare the belief functions of in,, in, and hand-side conditions. Let us locus on the rule r, : A ->B. Our

in: relevant frame of discernment is 0 AD' defined in (1). Sincer1

.40 is logically equivalent to the elements in the set
Bel 1 (0) -1.00 {(0,0),(0. 1)j,(11)) being true, it seems reasonable to represent

our belief on the rule r, by a simple support function with local

Bel,(0,,0,) element {(0,0),(,)(,)

Bel (0) -1.00 mr 1(0,0),(01)(,) P (2)

Bello,) -. 32 in, (0AS) =1.p,

Bel(O,,0,2) =.401

BI103) = .080 Hlow Shouki we interpret the mass p that we assign to tile
local element (ltJ,0),(0,l1,1l? To allawer this, we need to

* Sice iel(0, 0,~= Em'l( ~,,},the ~elet n (60,)has see how our belief on A propagates through our belief on the
remained constant, hut in Bel, seone of the mass that ruetgieablfonB
cuniintutes to total belief onl (011d) iscnta2dt i l ruet ieable n

1
I~In Section 3, when we wee' euiisidetinq evidence on A, we

restricted our attention t6 itic frame of discernment ()A Now
Continuing withl tile gardener example, suppose that we cosdrn h ueA- ,w aeadlpetfa0
believe that tile newspaper gives tile simle Support function cosdrn h ueA- ,w lv ifrn rm AR'

Actually tlile twjo traines are nut unrelated.,) is a coirsenino
flf) .6of 0 W Tile elements in 0 A can be put into a one-to-one

In 0
As (o = correpoilcle with a partition of the elemnits in 0 he

(the newspaper is rot very reliable), and tile neighbor gives correspondence, whichl we dtenote by equality, is

simle support function % MOO1)

ineighbo, (0A) .7 Notice that both aides in the first equation. a 0 and {(,0),f0,1)),

(our neighbor is old and often forgets the day of ftle week). represent A bring false , arid bothl sid1es in the second
M neighequation, a, and {(1,0),ft,1)), represent A being true. The

(a,) 0belief function

M - m(o A) = 1 -pA

(a, 15) ) defined on the0 Subsets of 0Acan be considered equivalent to
.60 .18 .42 the belief function

rews - -n - A(0)'(l,1)) = A
0 (a,) 0 A )=

.40 .12 .28
- - - defined on the subsets of .

-jr
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To propagate our belief on A, which Is described by m, very small example. The combination rule potentially involves

through our belief on the rule, which Is described by m, we Intersections and multiplications of all subsets of the frame?

can simply usa the Dempster combination m = mA 0 M,. In a large problem, how do we handle the computational
explosion? -"m

((o.0)-(o,).(1.)) o 6. References
P, p Dempster, A. and A. Kong, "Belief Functions and

Communications Networks", Harvard University Technical
(~iu) 1.1) (1.1) (010),011)) Report (11984).

m, Shafer, G., AMathtematical Theory of Evidence (Princeton
0 (.0)(0. 1).0, t)) 0 University Press, 1976).

0' ( 1 p~, (1.PA)(t P)

Shafer, G. and A. Tversky, "Weighing Evidence: The Design
and Comparison of Probability Thought Experiments", 6w

University of Kansas Technical Report (1984).
The r'3 hiinq m function can be easily read from the table.

I -t.ij Ite4 be the corresponding belief function, we are
interested in

Be,("e true") - Bel((O,t),(I,t)) (4) ::..
= m{(1,1)} .-.
= Pr,
~Ar

Wa ituri now to the interpretation of the number p
Suppose that we are absolutely sure that A is true. This lead,
to mA dmlind i (3) with PA = 1, and substituting this value

into the (4) gives Bef{"B is true") = prN Therefore, p is our
belief on B if we are absolutely sure that A is true.

Up to this point, we have been concentrating on the rule
r,: A-M. This is the bottom right branch of the tree in Figure
I Given some evidence on A and some belief on the rule r,
we have calculated a belief pAp on B. We can take this belief
on B, combine it with evidence i~n C and belief on r2 to get a
belief pApcpr Pr on D. In turn, this belief on D together with
belief on r3 ie belief pApCp pr pr on F. Also, evidence on P,

j A
E together with belief on thd rdle

3 r4 gives additional and
independent belief pEp on F. Combining these two pieces of
support on F gives a tutl belief

PP 2P3 4 "3 (PAP4IPr P,P3P4
on F.

5. Discussion L ..
We have seen a very simple and rather tentative introduction
into production systems and belief functions. The hope here
was a germ from which grow deeper thoughts about the
problems of dealing with uncertainty in expnrt systems. There
are miny questions that need to be addressed: Is the belief
function mr chosen in (2) of the approprinto form for
reflecting beliefs on rules? The combination rule requires that
the two belief functions entering Into the combination be
based on independent evidence. How do we handle
depenilent pieces of evidence?. We have only considered a , ,%-



COMPUTER GRAPHICS: STATE OF THE ART FOR DATA ANALYSIS

R.J. Littlefield

Battelle Northwest
Richland, WA 993S2

The field of computer graphics (CG) is now over 20 years old. In that time,

a rich variety of techniques have been developed for graphical display and interaction.

These techniques have been applied to such diverse areas as computer aided design and

manufacturing, flight simulation, advertising, big-budget movies, video games, and of

course, data analysis. Compared to other applications, the CG techniques used for

data analysis are usually quite primitive. This presentation surveys the current

capabilities and limitations of CG, discusses how these affect its application to

data analysis, and suggests ways in which more sophisticated CG techniques could be

applied to data analysis. Particular emphasis is given to graphical interaction and

the role of workstations.
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* Graphics for Specification:

A Graphic Syntax for Statistics

Paul F. Velleman

Cornell Unvrst

The Data Desk is a full-function statistics package for the Macintosh personal
computer. It employs a new graphic-based syntax for specifying statistics operations and
data manipulation. This article describes the principles behind the design of this interface and
discusses some of the consequences of ihis design.

Computer graphics have traditionally been important parts Graphics: L-Is
of statistical analyses. (Of course, "traditional graphics" in For the purposes of this discussion, I define graphics in a
statistical computing means "used for a decade or more by very general way.
those who could afford the hardware.") Graphics were *Any display whose meaning or function relies to some

used primarily for presentation of results and as tools in important degree on the physical position of things on the
analyzing data. screen (rather than, for example, on the numerical value or

verbal meaning of things on the screen) I will include

With improving technology came animation and interactive under the rubric of graphics. This means that if an

control of graphics. These were great advances in operation is performed by pointing to a word rather than
principle, but the only contact most d' a analysts had with typing it, I consider it to be a graphic operation. If the
them was watching video tapes and movies enviously at word moves on the page, or is made to appear, or
conferences. disappear, or change font or style, I consider that a graphic

Operation. One reason for this eclectic definition is that I i'."
Recently, interactive graphics have begun to come out of can see no reasonable way to draw a line between graphic
the laboratory. We are seeing more displays in which the symbols that happen to be numerals or letters and other
viewer/analyst interacts in real time with the display. For graphic symbols. The definition is thus an operational one; %

example, PRIM's of various kinds and origins, Brushing if it is used like a graph then it is a graph (even if it looks
scatterplots, and other ways to perceive higher dimensions like text at a glance).

are becomming more widespread.
The Environment:

There has also been a growing interest in the graphical We have implemented this design on a Macintosh
control of computer operating systems. The most computer. The relevant technical specifications are: "

widespread (and one of the cheapest at today's prices) is

foun onthe ppl Macntoh prsonl cmputr. he Graphics hardware: A high-resolution, fast, monochrome
ideas behind the Macintosh operating environment are by graphics screen (372x5 12 pixels). A mouse with a single
no means new, but in the Mac they have been made button.
accessable and affordable. N

Jerry Lefkowitz and I have been engaged in a project to Cmuighrwr:8~ C80 ih18 o
develop a statistics environment that uses graphic control 512K) RAM and 64K ROM programmed with highly

as the means of communication between the data analyst specialized support functions. Full IEEE floating point
and a statistics program. The program is called The Data numerics via software emulation. One (or more) 400K
Desk, and is currently running on a Macintosh computer. disk.

This article is the initial report on that project.



*Language: All programming in an extended ISO Pascal. Opening an object (on The Data Desk, by
Program resides on a Macintosh XL (nde Lisa 2/10) and is double-clicking on it or using the Open command) always
cross-compiled for the Mac. Corrently the program is reveals its internal contents. An opened variable exhibits
about 20,000 lines, but it makes extensive use of the its data elements, and opened plot is drawn in its window,
support provided in the Mac ROM for menus, windows, and opened bundle of variables exhibits the icons of the
controls, etc. variables collected together and their order. Windows

must also behave consistently. A window exhibiting data

User's environment: The environment is a "Desktop is relocated and resized in the same way as one exhibiting a
metaphor". The user sees objects on an imaginary plot.
desktop. The objects can be moved, grouped, or discarded
by dragging them with the mouse. These objects open into *WYSIWYG. What You See Is What You Get. At
windows to reveal their contents. The windows can any time, the screen shows the current state of the data.
overlap each other and can be repositioned freely. That is not to say that the screen is cluttered with a

spreadsheet of data values. (Rather, the data ere arranged

Syntax however the user wishes.) But one can immediately
The asi sytax f acomand s ojec(, ojec, ~discover the contents of a variable or the state of an

verb. This syntax obviates the need for a "Do it" button analysis by opening the approprite icon. Even data editing

and provides the opportunity to avoid many syntax errors is semi-graphical in the sense that the user opens a variable

by inactivating commands (verbs) that would be icon, points to an errant data value, and types the

inappropriate for the arguments (objects) selected. creun

issues: One of the problems with WYSIWYG operation is

PrObjctipent: h censow rpi bet that WYDSIWYDG: What You Don't See Is What You -

(usually as icons) that represent data analytic objects. For DntGt ooeaeo nioteio utb iil
example, each variable has an icon, so a particular variable or reachable as part of a collection of icons whose icon is
is not usually referred to by name, but rather by pointing to visible. Data cannot be edited out-of-sight. This is either a
its icon. restriction (if you like UNIX-style operations that can

change everything on the disk with one keystroke) or an
issues: The major issues here are in identifying the advantage (if you want to be protected from unanticipated
appropriate set of objects. For example, one could consequences of global operations.)
consider making each case an icon and graphically
gathering samples. One could consider different icons for *User-Driven operation: The user is in charge of the

integer, real, text, and mixed type variables so that their interaction. Any operation is available whenever it is
natue wuldbe mmedatey ovios onthescren. reasonable (but see the next item). Dialogs in which the
natur woul beke immediatel obvou onmte the screen.eaisan

However, we need to balance additional information ue sakdqetosaelmtdt pcfcdtis n
against the chance of overwhelming the user. We have haedfuttatcnbacpedyprsigaigl

button whenever possible.settled on a relatively sparse set of objects: Variables (of a
few types), collections of variables (of a few types),
output objects (plots, tables, etc), and a few special isses We, haetkNaseii tn gis
objects. - menu-driven" packages in which the program takes

control of the dialog and the user supplies responses to a

It is also important to establish consistent behavior among ln euneo usin.Mn re nordsg r
objects. For example, the same physical action should intentionally short and are actively pruned to cut away
have similar consequences for all objects. For example, branches that would make no sense in the current context.



Error Avoidance: The menus (being graphical) arc undergraduates to use the program and learning from their

dynamic. Only those operations that make sense for the experiences. Among the conclusions worth noting:

arguments selected are available. For example, if only one

* variable has been selected, the "scatterplot" command *There is no need for unique variable names or for

cannot be selected. If tests or confidence intervals are restrictions on characters or length (within reason). .i

requested, the "pooled t for g~ I 4'2 is not offered unless Variables ame identified by pointing to them. The screen is

two variables have been specified as arguments. graphically dynamic, so (for example) long variable names
are ordinarily shortened to avoid cluttering the screen. To

issues: This is a very powerful way to avoid many errors see the full name, point to the variable and click the mouse

that would otherwise require error messages. It simplifies button. Thus, for example,

* interactions with the user, and it is a valuable pedagogical
technique. Menu items that are not active are still visible, Temperature *C3
but in a gray type. To avoid restricting sophisticated users, 2

the design of commands, defaults, and dialogs must be 131

made with an understanding of the statistical Properties Of Things I never told my father

the procedures involved.
are all legal variable names.

*Customized Controls: Controls are graphic images ,

on the screen that serve to control the environment or the *Commands Can be verbose (and, consequently, more

behaiorof he rogrm. heyaremaniulaed iththe statistically precise) because the user is not typing them,
mous. Tu%, ou an psh.a bttonby ointng o a but rather is pointing to them. Thus, for example, the

pictre o a bttonon te sreenwiththe ouseand alternative hypothesis in a test can be stated very explicitly "

pressing the mouse button. Because they are graphic as, for example: ij1 < g2.
structures, controls can be designed to suit a specific L.
purpose. Why should you press a button labeled F5 when *Operation speed is greately improved. (Empirically, we

you could press a button labeled "Delete Data File"? have observed that even touch typists who are experienced

Controls can also be positioned intelligently. For example, users of interactive statistics packages can work much

buttons can appear directly under the cursor when the faster on The Data Desk. Certainly students doing

cursor's position has been otherwise fixed, similar assignments are completing them faster on our
program than on the widely used interactive statistics

issues: The design and positioning of controls is a package we have taught with to cdte.)

specialized area worthy of further consideration. At

present, have copied work done by others (mostly Apple) *Learning speed is greately improved. Computer-naive

for the Mac, but an argument could be made for designing undergraduates were given a single one-hour lecture and

controls customized for some stati sti cally -based hands-on drill. After that they were on their own with very

operations. For example a control might slide or turn little additional support needed. (Teaching assistants were

smoothly to control the turning of a three-dimensional available, but were not asked computer questions very

scatterplot. This is an area of future research. often.)

Some Consequences: Note: These last two points have usually been thought to
be mutually exclusive. Tutorial programs that are easy to

Some of the consequences of this graphic syntax have learn usually get in the way of experienced users. Some

become clear to us only'in the course of executing the programs offer a "Do you want verbose prompts?"

design. Others, only in the course of teaching 100 question early in the session to try to alleviate the problem.



We have found that this environlment is both easy to learn *On a fully integrated system, many things come for free.
and easy to use with no changes whatever. It appears that For example, it took no effort whatever to interface our
this stems from the fundamental simplicity of the program to most comnmunications packages for the Mac to

*interactions on the desktop. One way of viewing this is to make up and down-loading of data possible. It was
consider the (folk) "Law of Complexity Conservation" straightforward to provide the ability to paste output and
which states that there is a fixed amount of complexity in a plots into word processing documents, or to move them to

given type of program, but it can be shifted among the graphics programs for further enhancement.
designer, writer, novice, and expert. We have tried to shift

* as much of the complexity as possible onto our shoulders IlTe environment offers some unanticipated pedagogical
and off of the shoulders of the users. advantages. For example, commands and output can be

sufficiently verbose to be statistically precise. Greek and
Problems: math symbols are available to write things in standard

notation.

* * It is difficult to write programs (macros) in a language
that lacks a written syntax. One possiblity is to "record" Whither?
actions to play back later, but that has its own problems.
While we have a design completed for macros, this is still The Data Desk is now a reasonably stable environment
an area for further research. with a standard collection of statistical capabilties. We

have been using the program in a second-term statistics
This style of user interface is computing- intensive. We class of 100 computer-naive sophomores with success,

find that we are driving the Mac fairly hard; anything with and will make it available for general use by Fall term
less power than a 68000 might not be able to keep up. One 1985, The next research area is extensions to interactive
absolute requirement is sharp graphics. (We haven't felt a graphics. Much of the design of these ideas is completed,
need for color yet at all.) The chief bottleneck (as with but they have not ye! been implemented, and are thus a
many Mac programs) is the disk drive. sub~ject for a future talkc.

Pleasant Surprises:

You can really do quite alot on a $2000 microcomputer.
The Mac is a very powerful machine, even in its 128K
size. The 512K machine should handle substantial size
datasets.
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Grand Tour Methods: An Outline fr

Andreas Buja

Statistics Department GN-22,
University of Washington, Seattle, WA 98195

Daniel Asimov

Computer Science Department,
University of California at Berkeley, Berkeley, CA 94720

We would like to report on research It may be true that any single aspect of
about some advanced methods for explora- structure in data can be isolated and
tory data analysis based on dynamic com- somehow displayed in a number of static
puter graphics. These methods are now plots, but the grand tour offers a multitude
feasible because current hardware allows us of aspects simultaneously and in relation to
to recompute and redisplay scatter plots of each other. it can frequently replace hours
up to 1000 data points five to thirty times of staring at plots by a short inspection of a
per second, thus creating the illusion of con- movie and dramatically reduce the probabil-

' tinuous motion in a plot. Our methods are ity of missing structure as well. In our
based on the simple idea of moving projec- experience, the usefulness of this type of
tion planes in high (4-10) dimensional data display depends less orn the dimension of
spaces. That is, we design 1-parameter fami- data space than on the intrinsic dimension
lies of 2-planes in p-space, with the parame- of the data. If the data form 0-,1- or 2-
ter being thought of as time. We then pro- dimensional manifolds (i.e. clusters, curves,
ject p-dimensional quantitative data onto or surfaces), the human eye is able to pick
these planes in rapid succession while up the "gestalt" almost instantly due to
increasing the time parameter in small motion. If, however, the intrinsic structure
steps, which generates movies of data plots is of four or higher dimensions, grand tour
that convey a tremendous wealth of informa- methods alone will not necessarily be suc-
tion. cessful, and other tools will have to be used,

We call these dynamic graphics "grand perhaps in conjunction with the grand tour.
tour" methods. In our presentation, we will We would like to point out an important
show a short (5 minutes, 16mm) film featur- aspect of the grand tour whose impact is not
ing two artificial data sets (five circles in 10- apparently understood in a current discus-
space and a 3-dimensional torus in 6-space), sion of projection pursuit contained in
and two well known real data sets: the Bos- P.J.Hubcr and discussants [3]. Projection
ton Housing data [11 and the Particle Phy- pursuit in its original version is the search
sies data (see [21, the well-known PRIM-9 for informative projections through optimi-
movie). The film can be requested from the zation of information indices as functions of
authors. data projections. Thus the output consists

. .. °-o-
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of one or several data plots corresponding to should be kept orthogonal to the projection '

global or local maxima of some index chosen 2 plane to avoid confounding of location and
by the data analyst. In contrast, the grand speed of the dynamic scatter plot points.

tour is NOT just another vehicle for finding This is satisfied by the above mentioned geo-

interesting static plots, and it is not simply a desic motion, but one can show that this
competitor of projection pursuit. The out- requirement confines the grand tour to a

put of the grand tour is a MOVIE with all the fixed 4-space, and hence must be abandoned %

information encoded in the smooth motion if the tour is to scan 5- and higher-
of the 'scatter plots. We argue that the dimensional space. In our implementation
speed vectors of data points in a grand tour we use only piecewise geodesics, which

provide two additional dimensions of infor- allows us to scan any dimension of space.
mation in addition to the two dimensions of We have developed a set of tools for .

location, thus letting us perceive a full 4- designing and implementing grand tours.
dimensional space at. any given point in They can be divided roughly into two classes:

time. In comparison to the grand tour,
three-dimensional rotation is degenerate in aetriatin of panes by Euler

that one of the two infinitesimal rotations is a nd g t w h

held fixed, resulting in the loss of one dimen- parameter space.
sion of information. 2) Interpolation between randomly selected

Dynamic features must be carefully con- planes by "shortest paths", and analo-

sidered in the design of a grand tour. To sues of splines-
mention a few desiderata: At this point we need to introduce some ter-

-A basic requirement is (at least piecewise) minology from differential manifolds. Since

smoothness of motion to avoid jitter in the the actual computer implementation

movie and prevent fatigue of the human eye. requires a pair of orthogonal vectors in data

The smoother the motion, the clearer will be space for the calculation of horizontal and
vertical screen coordinates, we need the

the perception of the information encoded in

the velocities. Ideal smoothness is achieved Stiefel manifolds of orthonormal 2-

by so called geodesics, a notion which is frames in p-space. Similarly, since we would

applicable to our context in the precise often like to equivalence all data projections

sense of differential geometry. Our favorite which can be transformed into each other
through screen rotations, we also introduceimplementation is actually based on piece- teGasanmnflsG, f2pae

wise geodesic motion. the Grassmann manifolds G2p of 2-planes
in p-space. For implementation purposes,

- It is important to avoid distraction due to we consider a grand tour as a curve on a
excessive within-screen-spin. By this we Stiefel manifold, but for theoretical and con-
mean rotation which takes place within the ceptual considerations we prefer to look at it

projection plane rather than in the embed- as a curve on a Grassmannian.
ding space, and which is hence uninforma- The parametrization class of techniques

tive if not disturbing. As it turns out, any mentioned above parametrizes either mani-

given grand tour can be modified such that fold by angles, similar to the way longitude
it avoids within-screen-spin completely, and latttude parametrize a 2-sphere.

although the additional computational Angles are reals mod 2n, i.e. elements of the
expense may well slow it down to an unbear- circle T' = I mod 2n , and a p-dimensional

able extent. product of circles is a torus TP 
. We use tori

- Another desideratum is the following: the as parameter spaces because they allow
2 plane in data space which encodes velocity natural curves of great smoothness and

. . . . . .- . ... . . . . . . . . ..
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flexibility, namely the ones obtained by Currently, we are in the process of con- 4

pushing straight lines from RP into TV. If structing analogues of spline interpolators 5.

the coordinates of a vector in ]RP are linearly on the Grassmannian. The geodesic tour just
independent over the rationals, then the described can be considered as a spline tour

straight line generated by this vector is of order zero. Splines of higher order will
dense in T; hence thfe resulting grand tour lead to perfectly smooth motion, but will

is dense in the Stiefel or Grassmann mani- lose some of the simplicity of the geodesic

fold if the parametrization is onto. We have tour.

examples of parametrizations of the Stiefel D.Asimov discusses desirable properties
variety as well as the Grassmannian. For of grand tours in a forthcoming paper [5].

topological reasons they cannot be 1-1. The He states that asymptotically a tour should
techniques for parametrization are borrowed form a dense subset of G2,p , whereas in

from numerical analysis and they are based terms of finite time it should spread out

on concatenations of planar rotations quickly on the Grassmannian. This latter

(Givens transformations) and/or reflections requirement is formalized by the notion of

on hyperplanes (Householder transforma- "minimal amount of time needed to get

tions). Underlying these constructions is within an - neighborhood of any 2-plane."

the fact that any orthogonal mapping can be Theoretical lower bounds can be given by

decomposed into a sequence of Givens comparing the volume of an e-neighborhood

and/or Householder transforms. with the total volume of the Grassmannian.

The interpolation class of techniques for It is clear that this ratio becomes less favor-

grand tour construction is based on succes- able for higher dimensional data spaces.

sively sampling planes and connecting them (For volume computations on Grassmanni-

by motion along suitable interpolation paths. ans, see, e.g.. Santalo [6]. Asimov's paper

In the tour version we will show in our movie, contains tables and displays which indicate

these paths are geodesics on the Grassman- what can be expected in various dimensions.

nian, which are described in an article by It is apparently possible to come within 12
Wong [4]. They correspond to the simultane- degrees of any plane by watching 1800 ran-

ous interpolation of the principal angles domly sampled planes in 4 dimensions,

between two 2-planes. This scheme results whereas 28 degrees are possible with the

in a tour which lacks smoothness at the end- same number of planes in 6 dimensions. In 8
points of interpolation paths, but geodesics dimensions one can expect only 39 degrees,

enjoy many favorable properties, some of and in 10 dimensions 44 degrees. Although

which we mentioned above in our discussion these figures appear very discouraging at

of dynamic aspects of grand tours. Another first, we should remember that this type of

nice feature is the low computational cost discussion is somewhat academic, as it
which is not greater than that of ordinary neglects the dynamic nature of the grand

3d-rotations, at least when the tour tour which lets us perceive four rather than

proceeds on a geodesic path. At the end- two dimensions at a time. Second, the

point of a geodesic segment, there is a pause dimension of the data space is less of a fac-

of a fraction of a second due to sampling a tor than the intrinsic dimension of the data ,

new random plane and setting up the param- in determining how well we can perceive

. eters for the corresponding interpolation structure in data (see above). Recognizing

segment. In practice, viewers do not find the difficulty of finding structure of low co-

these pauses unpleasant, on the contrary, dimension by tour methods, we plan to com-

they perceive ceaseless motion as bine an interactive and dynamic projection
overwhelming and tiring pursuit version with the grand tour as this

r::.
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will permit the grand tour to remain in of treatment responses, i.e., linear combina

neighborhoods of local and global extrema of tions whose coefficients sum up to zero. In

information indices on the Grassmannian. the same situation, one could also be

In the previous paragraph, we referred interested in the dependence of contrasts on ./

implicitly to metrics on the Grassmannian linear combinations of covariates. We con-
when we mentioned e-neighborhoods of 2- elude that, for practical data analysis, one

planes. We seem to have an intuitive notion needs modified grand tours which offer more

of what is meant by "distance between two flexibility in the choice of data projections to

2-planes ', but there are ramifications which be scanned. For predicLor-response data

we will explain briefly. The best formaliza- the modification consists of confining a

tion of our intuitive notion is probably given grand tour to pairs of normalized vectors

by the maximal angle between a vector in which scan the unit sphere of predictor

one plane and its projedtion onto the other space and response space respectively. The

plane. A proof is necessary to show that this manifold to be toured simplifies to a product

leads to a metric on the Grassmannian, and of spheres. This is a submanifold of dimen-

a simple way to go about it is via an interpre- sion p-2 as compared to 2 p- 3 , the dimension

tation in terms of the Hausdorff metric on of the full Stiefel manifold. We will show an

the unit circles in p space, which are in 1-- implementation of this type of tour in our

correspondence with the 2-planes. This movie. For repeated-measures data, one

metric can also be defined as the larger of would confine the scanning vectors to the

the two principal angles ei and 02 between space of contrasts, i.e., the vectors which

two 2 planes. In some sense this is an L_- are orthogonal to (1,1,1, ... ).

metric because it turns out that Grand tour techniques can also be

(O + O )1 P define metrics on the brought to bear in contexts which are rather

Grassmannian, too, which we call L •metrics different from those we have considered so

for obvious reasons. Wong mentions the L 2 - far. A basic data analytic operation is the

case as the one which creates the Rieman comparison of several plots of one given data

nian structure on the Grassmannian. The set. The problem is to identify cases and '

other metrics for I <p < - generate Finsler groups of cases across two or more plots. To

geometries but these all lead to the same support this operation, one can use geodesic

geodesics. Notice that the L 4 -case does not interpolation of two projection planes to

lead to a Finsler space due to its non- transform one scatter plot into the other

differentiable nature, but it is obtained as dynamically. This makes use of the fact that

the limiting case of a i-parameter family of our visual system keeps track of the identity

Finsler geometries, of moving objects.

In what follows we present a few ideas Obviously, there are many more possibil-

which greatly increase the flexibility of the ities of applying motion graphics to data

grand Lour as a viewing method for mul- analysis. We hope that the grand tour will be

tivariate data. The grand tour described so recognized as a useful Lool and a natural

far would scan too many projections of mod extension of 3d graphics. Conceptually,

est interest in many situations. For higher dimensional motion graphics are at

example, in the case of predictor-response least as "intuitive" or "counter intuitive' as

data, one would like to concentrate on plots 3-dimensional ones, and some important
of linear combinations of responses versus capabilities of the visual system seem to

linear combinations of predictor variables, work in higher dimensions as bell. Partial

while in the case of repeated-measures data, supportive evidence for this claim will be

one would like to concentrate on contrasts provided by our film.

_Vo
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Nonlinear Least Squares and First-Order Kinetics

Il Douglas M. Rates
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Opci'ne of the persisient problems with the use of nonlinear least square, programts is

spcfigand codling model functions and partial deri ati' es then iituirpol ating this code
into the programt. We sltov how, these difficulties can be b\ patted fot lie inipor tarit vass of
nmodels defined b' linear svsterns of differential equations. Not onl\ are the model functons

easil% specified but the partial derivatis es can he a1ittontatLO it lVCuet ,i'd to allos 11t le srOf
sophistcated optirni~afion algorithms mithout an additional burden on tlte iuet. These-
models are "idel\ used in pharniacokinetics and chentical kinetics.

An additional problem that occstrs in pltarniacokinetic attalvi it 5itrorpor aion of
non-htonoscedastic error structures. We shovi howk the 'transfortm both sides" aSptroacrl due
to Carroll and Ruppert can be used with this nmodel specificatiotn sttateg -

1. Introd~uction 2. Linear Kinetics

Otte common difficulty with using nottlitnear regression pro- A first-order kirtetics sstettt. such as a comp1 artment itodel,
grats is specifying and coding the model function and, possibly, is one described b\ a set of mieat diffeiential equations. In the
its derivatives. Specifying the model functiott, particularl ' in (he comtpartmternt miodels. an Organism is cotisideced at contposed of
case of inmplicit models defined b\' ssuens of differential equations. homogenerous. mell-nited contparimtettts silich communicate with
can provide an opportuunirs for the user to ntake sYnua\ and uran- each Other h\1 the erhattge of tuatsr ial. A drup admntistered to the
scripiion errors which take a long time to detect and correct. An bloodtream could pas', from tlte blood to bod\ iisues, hack into
ecicn more fertile ground for errors is specifstng and coding deriva- the blood, and finally be eliniinated from the svsteti through the
tives of the model ftunction with respect to the model paramteters. kiditevs, for examiple. The blood suould bie cottsideled as one com-

t our experience. this is the single most error-prone stage in a partntent. oiher body tissutes as a ketotid cotttparttttnt. sulile the
tiottlitear regression analysis. Empirical esidence ot this dlifficulty exterior of the system suould bie an implicit, third rontpartment.
is the popularity of derivative-free nmethiods wihether based on finite Stich a s*stsen and its communicationt paths would be represented-
difference approxinmations to the derivatives or other schenmes such as in Figture 1.
as DUD (Ralston and Jenni-ich. 1978).

For one important class of models, the first-order kinetic .-

models defined by linear systents of differential equations. Jennrich -

and Bright (1976) demonstrated that these difficulties can be
asoided. They gave a representation of the solution of the difreren-
tiat equations in terms of the matrix exponential and sh owed that
the ntodel derisati\,es can be contputed simttltaneous]s sith the
model function. We provide a different derisation with greater Y k12
generafit\ in section 2 and discuss sotte of the implementation con- Lo
%iderations in section 3.

Linear kinetics% models are widely used in pharmacokinetics
.here they are called 'linear compartment models" or. simply.
compartnment models. A straightforward application of nonlinear
leat squares to pharmiacokinetic data is often inappropriate. Figure 1: A 2-compartment model
though, because the aisuniption of homosredasticit v (constant vari-

anuce) is not wuarranted. Weighted least squares methods are sonic-
tinmes used but we havec found the transformationmehdfCarl
and Ruppert. (191?41 to be tiple and Cffectire. itt section 4 we -

Irdescribe the method and its inmplenmentation. theit gise sonmc exanm
ples in section 5. Thte (oiettationt of te drug in lie s urtous ottlvimemtts at

an\ titie tis ould be i mieit
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In a ssstem mith K compartments, f would be K-dimensional. P ~1 P
* The kinetics of the qsrnlt ahichi describe ho" the concentrations d

c ha nge mwith t ime, are li near if uwe can r epresent t he de r i\at i\es of~ w-uhere P is the total number of parameters. To avoid cumbersome 7
,A oth tespect to time as a linear function of -Y. That is, the system expressions, me aill adopt tite convention that a subscript p denotes

is ovenedbythesysemof iffrenia eqatin~diffeientiation with respect to 0, We obtain lhe detiiatives b% dif-

dX___ = A () f)(2.1) ferentiating the system (2. 1) to obtain

*~ ~ ~~~~ % where 4 is the K' < A yvsues ,mulro % which does not depend on j or ~,; ~ l) . 1 yt 1 ()(4
L~i)of dffeinfia eqution uit

* t and jand is the drving.funciton for the svsteni a hich indicates howk which is sirnpl\ aitothet linear ssstem i lteia eqainr t
material is being added to the s 'ysten,. systenm matrix A and drising function A1, I(i) 4.,().The solu-

In pharntacok inet ics, the driving futnction is usuallsi a bolus tion is thus
injection into a conmpartntent, corresponding to an impulse or 6-1 (l) = e 41 A,: (1) + j1 (t)) (2.5)

* ~function in that conmpartnment, Or ati intravenious infusion into a
*conmpartment, correspondlitg to a constant input function in tltat ahhere Ilt) can be obtained from (2.2).

compartmsent from time i. to r. With a bolus injection, we usu- Returning to the svstemn of Figure 1, suppose that the input
allv consider the injection as deternmining initial conditions function w'as a bolus injection of kinown amotunt into compartment

= ~ . ~ ~1. tlte blood. since the "volumne of distribution" for thle bMood
No .Yo~h T =U(0)would generall\ be unknown, the initial contcentrations aould be

but uae %; ill find it con\senient to conssider general dr i% ing futtctions represented as .
*in this section. (,) 26

These systemns ate often described in ternms of ruie convxants
denoed , u. hch ivethemuliplir fr te cnitunialin font and tite solution would he gixen by (2.31. Equtationt (2.5) collapses

* ~conmpartment j to contpartment i a% shoait itt Figure 1. (B\ A

* ~~consention. a rate constant 40, is the rate constant for elintination ~,1l ~ 'r u4A0l r 17
front contpartment i). The sylstem in Figure 1 would correspond to 'rhis nm still seeim complicated hut the pieces are ralhi simple.
the linear differential equations Here

01+t)'Y'(f) +~ AWt202) -1.I ' 2 1O.3

d s,(:) ILA4 = (.0
- - , 2. (.yim

If we set 0, 40(, .0, 42 , and 0 1 4 ~ the s\seu marAi,~ 0 0

then

( -01 +0) sJ(I

I le solutiont to the ssient 12. 11 a itltc di% ing function ift) is A3 10 1

ahere c'' i, hle tuiaris detet mined 1,\ hbe t'n' eq fri poll l et eiie,=
A4 10500

and the 4dettotes comtolution. IThat is. y~II e'A tAJ' I

C x " IIU -- frill "ttlf I. ld y1(t c "A, 'C4

In the cawe of a bolus itlection ahere 1f(t) is an inululse function, 13") C4 -, A 3C11
the solution, (2.21 collapses to attd

I'sing (2.21 or tlte special fornt (2.31. we can deterttine the There is anothter %a in ahtich paranteters can enter the
state of the sstent at an) time rand hentce determtine the N- kinetic systent and thtat is as a "dead tinte" or lag tinte. The incas-
dinmensional expected response sector M for a nonlinear regression tired tlme, t. may not correspond to the effertive tinte in the system
ntodet a here the response being considered is the concentration in and it may be mtioe realistic to describe the kinetics in termts of

* one cotmpartment and the experintental conditions are the tintes;
r,.i I . ..N at which this concentration is nmeasuired. How- T ft( - 10) 4

*exer. we can also use the same technique to determine the dens-a- wre is an ttntnoan paramteter. This nmodification is easily
tises incorporated into (2.2) and 12.4) to genterate thte requited expected

2 - '



*responses and derihatives. litles such as those in Etspack (Smith ei al.. 1976) wiill usuall,
return a decomposition even in degenerate cases and the only clue

3. Implementation that the decomposition doesn't exist is that UI has a huge condition

The implementation of these methods involseS txso considera- number. Basely and Stewart (1979) provide a method to reduce A4
lions: specifying the model, and performing the calculations in to a block-diagonal form which can be used to evaluate the nmatrix .

(2.2)and (.41.exponential in these cases. The method can he implenmented in a

The model can he specified b' insdicatrng the roles of tile straightforward fashion but is too length' to describe here.

pal ;meters as rate constants. nta coniditins. dedtimes. etc. Assuming thenr that software such as Fispack code catt pro-
thirtugh a patramet use matrix. We hare chosen to rise a matrix duce the decomposition (3.1) wvith a well-conditioned U. it is con- .

xxih 3colimtstheftst ontintigthepaameer umer.If he venient to pre-multiply all the systenm vectors by U- to produce

paranteter is a rate conistant the second and third columnxs indicate Irt - I~ li)

the sorilce Mid sink rmpartitteit w ith a sink of 0I indicating elimi-
nation. Initial cotnditions o1 other forms of dhiin ig functions are I)-(J ()

* s~~~~pecified %iihf riegaise saltiex in tire tirmd coluiiit md the numbtiher0 - 0

- ~~~~of the affected criipairtrient is ire sex otd rilititis A -1 ili tlte )-13
t f)

third colunl idicatei, tite leih ot an itmpuilse. 2 idicatex fhe lesel
* ~~~~of a coitxxrl itifuiron. 1, rilicair, the slope Nof liniear Iinfusioin, )-lJ I

etc, Iii Sp~ecifix atioli 'Chliriri c ombinted %xil tth Ile i e~tartabilr pro- II

pi of linear kintlic Lxseu ani he ti secf to model a drixi nfg ft)-Uj

function tixiiig kphires. ho Inrdicatie a lac tittle. "Ve 1xe a zeio 0I ile Krim U ,"I)i

secoind column. and, finally.

As air example, the parairietet -use nmatrix for the 5) Steinc f 4
described in Figurie I mii tite initial cottditions (2.6if is CI= / ',

The notation for L,J(i and K,,(r) is not conisistent w ith earlier usage
I sice fo0xtlLfIi o h drvtv it epc o0,o

2 I 2~.VO. It is, couxenientl though.
3 2 1
4 1 - I Expressions (2.2) and (2.5) no"i beconme

* ~~Using this ittfortmation asd the current paratmeter \allies. a pro-~)=CiKt (3.6)

grain call getierate .4 arid 1t,. and

Notice that this schremei allows a single paiameter to base -pljCLt

nmultiple uses. Changing the-parameter-uise matrix to Pr +~f) 37

I 1 0 Because CA,' is diagonal, tire convolutionis can be evaluated as.

2 2 2 tion, (3.6) and (3.7) reduce to

3 I - I LMi - ero(3)

*and re fittiing the miodel will allom testing of tfte hypothesis that and. -

* At: ~~~Otie A and if! hasve been determined. the expressions PLine'O,,(9

(2.2) and (2.5) nmust be evaluated. Moler arid \Vai Loatn (19781 Each elemntt in the conv-olution matrix is

*give an extensive sursey of nmethiods for thre mnatri exponential and 1C1c,,Al ' e k 1 (3.10)
concliude that nmethods based on an eigenxalue-eigens'eclor decom- p P~.i .j
position of A should be used wshen eraluatioris for tiails different u here
i's are required. If tire eigenvalues of A are real and there is a
complete set of ergenvectors so we c:ait \%rite C (C '. I j3.1

A~~ U U
ilA -C

A =diag(lt. AX) (3.2)X, X

then IC X,'~

e.1=UA - (3.3) In practice. the cotnditiotn A, :A is determrined fix comlparinig

where j (A - A ftoi thre r elatise miachtinie In eci'ion.

eA, dicag('...... .P X)(4 tr Since tii inrrslerniiatir ixex teir late r tltntin dcectlx arid
e (3.4) fil mims lr iero oritie. Ilii- a tiral paiiers that3 ire

which imniediatels gives an evaluation for inmpulse driving func- ise are tile ocu ,Ilit utI l I )ar rn eix(hixai rr ire ir1i1ui1mi nt mi-

tions throrughi (2.31. tral tneiius.1 fix ;i\oid' fiai rig to uxe irtxramrid 0ltifli-

O ie difficutrN here is that the decom position in (3. I1) does not aioI ueliids ftor pfrssicall% iteanitrg)ii) paramrieter e-clinain. It
alssavs exist, even for noii-pathological cases, and the detection dosfidrearrrortifcit ihnaparciteptt510

those cssis qiedifficult. Standard eigenvalue-ergenvector ro- needfed liii the iiic s l)site thte cxiinae of ire log tate cotitalrt

11ser ran) the v1oiele Cxirifiedf
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4. Heteroscedasiclv

With meamuremients of phvSicaLquantittes. such as drug con- time activityIcentrations. it is not uncommon to have the level of the noise min. counts
increase 'Aith the level of the signal so nonlinear regression model- 2 ....1. IF-
ling with a constant variance assumption is inappropriate. A realis- 4 113601
tic filting of compartment models should include sonie method of 6 97652
allowing for changing variances in she noise. Sonie cighted 8 -90935
least-squares mnethods; have been used (Jennrich and Bright, 1976. 10 84820

Kramer et al.. 1974. Wagner and couorkers. 1977) hut the 15 76891# q

weights are often chosen on an ad-hoc basis and, more impor- 20 73342.1

tandy. the %seights are often based on the observed concentrations 25 70593
rather than the predicted concentrations. 30 67041

Sev-eral related transformation methods. sshich model the 40 64313
changing variance as a function of the response level and thus 50 61554

account for heterciscedlasticit), have been proposed (Box and Cox. 60 59940

1964. Carroll and Ruppert, 1984. Pritchard. Downie. and Baron. 70 57698

1977). We find the Carroll and Ruppert approach to be reasonable SO 56440

and easy to implement. This uses the Box-Cox transformation fain- 901 53915

ily HO0 50938
13(0 48717

xI 1501 4599t,

s- A0(4.1) 160 44968

ll og(r') A=O 170 43602

in \khat Carroll and Ruppert call bi nfrig ot?) sides". TbeI aa 10 468".Tal 1tanfrmn Datfot Jennrich and Bi ight (19761
For a given value of X. the estimates 0. are determined by

fining the transformed data y*(Al to the transformed model functionz
fix (/.a) resulting in a loglikelihood. up to a constant, of

5E)(X) V logf3.V--log(S (OA) (4.2) s
'5 uhich is then optimized over X. Since the derivatives of f

5 (~t
\kith revpect to e are easilv calculated front df/de. we Can Use the s
methods of the prev ious section to calctulate models and derivatives
for transformed compartment models.E)

Thte loglikelihood function over a range of A can give an indi-
cation of what are *reasonable" values for X. In some cases, as
slio~n in the following section. there is ver\ little sensitivitA of the
data to transformtation and A is essentiall\ irrelevant. In other Figure 2: A 3-compartment catenmry model

-~ cases, the value of X is sharply determitned and the need for
tratnsfortmation clearlk defined. Wec examtine thre plot of the
loglikeliltood versuts A to determiine a reasotrable atid "natural" The loglikelihood of X. along with the data in the original

value of A (ustrall 0, 1)2. or I) and, using the rationale of Box count scale, is shown in Figture 3. For A, the MLE was about -0. 1

and Cox (19F2) or Hitle\ and Hunfer (1984). condition Ole sub- with mAide 95T, confidence limits of -2 to 1.75 so we ;elected X = 0

SCteuet arralsiv on that \alue of x. (log transformation). The fitted parameters. confidence limits and
parameter use matrix are shown in Table 2. In addition, the

*S. Examuples parameter estimates for X = 1 are included for comparison.

We consider three examrple, front tlte literatture to denion- The paratteter estintates are s-cry insetrsitive to transforma- 1

strate the appllication of the transformation approach fort Ironos- tion primarily because the relative range of the responses is not

rerhasicii and thte flexibilits of model description. The lirunlrilda large. The ratio of the largest to the smallest observation is 3.54:1
data frotm Jetntrich and Bright (19761 shossn itt Table I ate blood and even the logarithrm transformation is fairly linear over this

conrcetrations of sulphate measured by a radioactive assam. The range as shown in Figure 4b.
resutt are quoted as counts. Jennric h and Bright lit a thtree- We also show the observed atid predicted responses and some
ronrattttent catenar) ntodel (Figture 2) to these data uing of the residual atnalsis is Figure 4. The residuals for this model
sseighted least squtares with the %eights proportiotal to sj2 and do not sho" susp ilts patterns bitt fininga these data with a two

-. astttnting an initial concentration corresponding to a count of compsartmrent stindel did produce ntroiceable patterns in the residtt-
2x 105. We fit the same model but Amith a sixth parameter of the als. The treed for a itree compartment model to adequately
tnttial count in compartntent one and using the power trattsforma- reptesent these data sass confirmed A tth an F-test.

hours.

N.:
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Jennrich & Bright (1976) Jennrich & Bright (1976)

Data m Observed & Predicted

LU. 9

C ~U'
0 50

41 0 A eei o rntj~it

0 50 oo IO 0 o 100 150 200

Time (mins.) Time (mins.)

Figure 3a Figure 48

Seert of Trnsorato
Lambda Lqglikelihood &951 C.l. in

U

-4 17k 0
01 I
j 

.4 
o "

144- .4- Ul'

In U

-2 -1 0 1 2 -0.8 -0.4 0.0 0.4 . -

Box-Cox Lambda 1og( Activity
Figure 31 Figure 4b

par. 
oise 

EqIOl co.ll. in. l'S1.()

I 1 0 0.(K0941 0.685.().0i04 ().00972
2 1 2 0.2848 0.2324.0.3491 0.3011I
3 2 1 0.1923 0.)642.0.2253 0,2022
4 2 3 0.0342 0.0244.0.0410 0 0384
5 3 2 0.0627 0.0525.0.0749 0.0667

I -1 2.434 2.228,2.659 2.489

Table 2: Pararnrier estimates for Brunhilda data
,i% caled by I0- 

.
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00 Plot with Normal (0,1) 1251 radioimrnunoassa). The data from person DL, consisting of

- u CU7 serum dipoxin concentrations. is shown in Table 3. Kramer ei al.
EU (1974) fit the data to the three-compartment mammillary model of

Figure 5 using weighted least squares with weights proportional to

-4 exp(-0.294y,). These weights were obtained from a separate
experiment.

73 ~We again found that XN 0 appeared to be a suitable choice
at o but this time the plot of the loglikelihood ersus X (Figure 6b) indi-

-4 cages a fairlk short range of acceptable A salues. The NILE is at
10 about 0. 1 with approximate 95%~ confidence limit.% of -0. 1 to 0.35.
10 -4The fined paranteters. confidence limits and paranmeter use matrix
V are shown in Table 4 along with the parameters estimated with
0 A = 1. In this exatmple the difference between the paranmeters

(n estintated using an ttn'sei~ltted analssis and those obtained fromt an

-2 -1 0 1 2 tm ocntto

Norml (. 1)Guat l~s 0.035 20.50
Noral(0.1)Guaties0.069 17.50 4Figure 4c 0.l102 14.5(0

0.135 12.50
0.168 13.00
0.235 12.00
0.302 11.00
0.368 9 .10

Standardized Residuals 0.502 9.60 -

Cu w0.753 5.60
1.003 4.90
2.005 31.20

.4 W3.008 2.00
*4.030 1.80
M7.833 0.90

It 15.900 0.85
W23.717 0.70

.4 *36.450 0. 45L
L47.183 0.43

71.750 0.39 I

*Table 3: Data front Kramer et al. (1974)
A-i11

Cu Person DL

-0.5 -0.4 0.0 0.4

Predicted log( Activity
Figure 4d

One point of interest about the finted paranmeters is that theE)
initial activit-, assumed by Jennrich and Brightt (1976), 2 x 10. is
not included in the conftdence limits for 0.,. If te model is fitted
ott the log scale wthA an initial actisitNs of 2 x 10 ' the residual Fgr :A3cmatetmm ilr oe
sunt-of-squates is 0.00287 with lb degiees of (teedom. Incltuding Fgr :A3cm otetmm ilr oe
6,, in the model produces a residual sum-of-squares of 0.000878 so

the calculated F statistic for a test of l =2x' )05 is 34.06 with 1
.1 and 1S degrees of freedom. Besides the formal F-test dettonstrat-

ing that 2x JO" is a poor value of#.r, we also found tltat the residu- -
als for that fit exhibited poor behavior. 7

A; a second example, %e consider the digoxin data from Kra-
nmer ei al. 11974). A rapid (bolus) intravenous injection of I msg.
of this drug was administered to five htealth) tmale solutiteers aitd
blood samples were periodically w ithdrawn and assayed using a



Kramer e t al. (1974) analysis of the logs is striking but here the ratio of maximum

Daaobservation to the minimum observation isgreater thn ifinv so the

filled salues reported in the original paper differ only slighll% from
those here. The residuals. displayed in Figures 7c and 7d, 'do not

U demonstraie disturbing pitterns.

-'M

Kramer et al. (1974)
0

-4 U'S 0Observed & Predicted

C IC
o

C

Time thra.)
Figure 6a CU

0

Lamda L~Oglikelihood &95% C.I. 0 20 40 60 80

Time thrs.)
Figure 7a

-4i

Severity of Transformation

CU

CP.

-0.2 0.0 0.1 0.2 0.3 0.4 L
in

Box-Cox Lambda
Figure 6b

U__ _ _ _

-1 0 1 2 3[2

[i'ause _______ 5~h onf mi.______logi Concentration
PaUe Est.(0) J 9 5 ]ovit Esifi)_

fI 1 0.2344 j0.1764.0.3115 0.5387 Fiur 7
21 2 1.250 0.5546.2.819 9.517

3 2 1 453 0.5797.3.64 3 1 2.9214 J 0.7964 0.5967J1.063 L 1736
531 0.06493 0.0451.0.0935 p0.2174 -

L6 1 19.42 16.08.23.44 29.05

T able 4: p'arameter estimates for Person Dl_
Kramer ei al. (1974)

:%
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00 Plot with Normal (0.1) _ _

-q . time concentration
hr. mcg./nil.

(.25 215.6
440.5 189.2
U0.75 176.0

V1.0 162.8
0 i 1.5 )38.6

N2.0 121.0
to3.0 101.2

to 4.0 88.0
*0 6.0 61.6
M12. 22.0

24. 4.4

( 14 . 1 0 .1

Table 5: Data from Kaplan el a. (1972)-2 -1 0 1 2 Subject 5
Normal (0. 1) (huantiles Par. Use Estf0.5) 9517, con(. int. Est. (1)

Figure 7c I 1 0 0.2252 0.2092.0.2451 0.2285
2 1 2 0.2995 0.1784,0.5028 0.3145
3 2 1 0.853t) 0.5787.1.259 0.9248
4 3 -] 242.7 ___ 227.0.259.3 243.8

Table 6: Paramieter estimnates for Subject 5
StandardiZed Residuals Kaplan ei al. (1972)

Kaplan et al. (1972)

Data

M 4 0 i

'0 if f i

-1 0 1 2 3 L'

Predicted logi Concentration )
Figure 7d

0 10 20 30 40 50
Both these exanmples indicate the need for a three-

comlpartmient model. In practice. the use of tsso-(orparinieni Time Mhrs.)
mocdels is much mocre common such as the e\aniple from Kaplan ei iuetal. (1972) \k ho studied the pharmacokinetic profile of sulfisosazoleFgue a
in man after a Wous 2 g. intrasenous inJection. The data from

* Table 5 msere fit to a two-compartment model with thle results
sho% n in Table 6.

The logtiketihood curie, plotted in Figure 8. acligeses a max-
to iici at ahno 0.7 %k ith apprownm 95'i cofid~enice Ii iiiit, of) 0.35

to 0.95 ici e chose a coinenient X of 0.5. '1hfe estiiates Oliaitied
* (miiin the iintranshtornied data, fit fall i thin thle confideiice limits
* ~ohtaiiied using the optimal h 1hte itaniforinu is quite linear

- iii rr 11,011 of lie ti ii e 01 ciiiieniations . hll a' tle se ei iiN of tile
* ii ~~airsflii oicn ii~e I'e .e a, A dei reise' . the lait (Acih'eioiif
* ~~betomne, iiiore iilirant in delitiming tile fl. Agaiin, the resi-
* dual anal~sis in Figure 9 does not reteat suspicious pttnerns.

% .
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Standardized Residuala5 The approach of differentiating the dificiential equations to
obtain the 'sensilivit\ functions" or derivatives wtith respect to .

('51 CU i model parameters has been used bI Caracotisios and Stewart (1985)

U in more general reactor modelling. Their methods apply to mix.ed
systems of differential and algebraic stsenis as %iell as to certain

types offpartial differential equations.

MUsing transformations to (teal u ith heteroscedasticit%. as * '

V described in section 4, is a po-erful technique butl it can resutlt in

NU using too nsani parameters. Many of tihe data sets for whbich ~'
0 compartmlent model% are used consist of a dozen or fewer observa-
L 4 Wtions. Even adding one parameter to account for heteroscedasticit%
iu tcould result in "oser-fitting" the data. It also opens the possibility

toof masking deterministic inadequacies of the model. using a 2

Aj rompartmeltt model where a 3-compartment model is appropriate
U) sa%. b% changing the stochastic part. that is altering X~. The sensi-

(l itsf of tile deterministic model to the transformation for homos-

0 5 ~ 15 0 25cedasticit\ is considered in Wolf (1985).

Predicted ConcentratlonwK* rktn edctietsI
This research has been supirted b\ the National Sciences

Figure 9d Foundation under grant nuntber DMAS-8404'970 and by' the Natural

Sciences and Engineering Research Council of Canada and aided

6 Discusiunh\ access to the Statistics Research Computer at the Unisersit\ of
6. Dicusson Wsconsin. We had hrlpful discussionts "rith Piofessoi Ra\ Carroll

The calculation ofjP. in section 2 can easily be generalized, and Dr. Lemis Sheiner about this material.

For ex~ample, second deritatives represent solutions to siems of

[he form Referentces

=q~ Aq 5 ~A~~+,,~A,~k 5 , (6 Bates. 1). NI.. tnd 1~i' ). G, (199i4). "A Nitilti-ekpOnSe

* ~ ~ ~ ~ ~ ~h ich . again, have a solution throughi convolution as (al'Nr oiA 'ijl r. rllulrIi~'tn.trttC

.,' IA5 ~ ~ 101 tSwir/o,,o,; anid Comipttrtiotl. 13. 705-7 I.

sinc, inour epreentaion.Bates. l)oriclas NJ.. ;rIld \'atts. I~tnald G. (1
985a1. "A General

icd11a' e\%lon l'rrtcedo re for mi uli,- Response Parameter

atid myr. 6. , 1-01

It Bates. Dotiglas MI., and \\'ails, Donald G. 11985h). "Mul-
tiresponse Estimation \A ith Special Application to Systems of

As mentioned in section 2. the iteilior of litasel\ arid Ste\rart Linear Differential Equations." 7'eIrrwiicrica%. 27. 000-000.

0I979) 1rlou s Feneral ratio to %sfeiirs lieoe er e are degevierate (with discitssion)

ripenspaces so If droes riot rN st. 'Threriirod' cair also estetidin
tire cawe of kornple'. etgrimaiiCs \01lii h, thoutgh rale, (iMl iwCtir ill Baveis. Cuinice A., and Stewart, G. W. I 1979). 'Ani Algorithmt

p actce. for Conrpintg Redicing Sutbspaces by' Block Diagonaliza-

In sonie chienrical nmodellintg situatiorns, Oite rate coints lion." SIAM Journral of Nutu a/rr~ Arralvmr 16, 359.367.

mit be eisen as luictiins of otirer esperinetral settings stich as

l enrperalirt and presirire. T'he Airierius mrodel rs oftetn used for Beal, Stitart, arrd Shreitrer, Lewkis (198
4). NONMEM Ilair5 Gisrde.

this. Tire crain rule can be used to rilntain ilie der i\3ates trith San Francisco: U. of California.

- ~respect to tile Art heriris parineriers pi'en the ileriant es for rite

rate constants. The inmportant areat of nmodellitng liaimacokitreti Bos. George E. P.. and Cox. David R. (19641. "An Analvsis of

parameters. such as elimitration rate constants, for entire popula- Transifornmations.' ./OHIRa/ ofl/ic ROVOI 51065srieoI SoCre, ecr.

ions is addressed bN NONNIEM (Real and Shieir, 1984). Matl\ if, 2b. 21 1-252.
of the phiarmacokinietic paratrreters of initerest air frirctions of the

rate conrstants and driving flunctlon5 so the deikites ith resjrect Box. G. E. P.. and D)raper, N. R. (19651. "The Bayesian Eslima-

to these parameters can be obtaitned throutgh tire resuilts of sections tion of Conmnon Paramreters fromt Several .Responses.'

*2 .and 3. IBiosiciirika, 52. 355-365.

Atnothrer situation that occurs in chetinical mnodtellinrg is tire

asaiiab-ilit of tmeasuremrents on miore than one respornse. "the Box. G. E. P., and Cos, I). R. (1982). "An Analysis of Transfor-

deriraikes of tile nmodel functiotn- front section 2 call be used in tire nmions Re\ isited. Rebrutted." Joitnal of O nrc.iienrwr olirtil-

enriatized Gauss-Newton algorithnm (Bares arid Watts. 1984. al A.1511(iatott 77. 209-210.

Bates arid Watts. 1995a) to miniize tOw Box-Draper esilation Caracotsios. Mi.. arid Stevart. W. E. (1985) 'fSoftware for
criter ion (Box atid Draper. 19651 v hich takes in account cor rela-

tiotns betucert responses. Applicatiotls of multi-iesponse estimiation Sensitivirs Analysis of Mathematical Models.' Chemical

for sints of linear differential equations are gin-clt in Bares and Engineering Department. U. of Wisconsin - Madison.
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COMPUTATIONAL EXPERIENCE WITH CONFIDENCE REGIONS AND
CONFIDENCE INTERVALS FOR NONLINEAR LEAST. SQUARES"

Janet R. Donaldson and Robert B. Schnabel 2

Center for Applied Mathematics, National Bureau of Standards, Boulder, Colorado 80303
and

Department of Computer Science, University of Colorado, Boulder, Colorado 80309

We present the results of a Monte Carlo study of several methods for constructing confidence regions
and confidence intervals about parameters estimated by nonlinear least squares. We compare the esti-
mates produced by the most conimonly discussed methods, naiiely the lack-of-fit method, the likelihood
method, and three variants of the linearization method. The linearization method is computationally
inexpensive and produces easily understandable results, while the likelihood ind lack-of-fit methods both
are much more expensive and more difficult to report. In our te ts, both t. e lack-of-fit and likelihood
procedures perform very reliab l, but all three linearization methods often produce gross underestimates
of confidence regions and sometimes produce significant underestimates of confidence intervals. Among
the three variants of the linearization method, the variant based solely on the Jacobian appears prefer-
able to the two variants that utilize the full Hessian, because it is cheaper to compute, and is always as
reliable as the other two variants and sometimes more reliable. Cases when the linearization method -"

confidence regions will be poor appear to be reliably predicted by the Bates and Watts parameter effects
curvature diagnostic. -

1. Introduction Thus, S,

arg min S()
This paper presents the results of an empirical study .-

comparing several methods for constructing confidence where S(9) is the residual sum of squares,
regions and confidence intervals about parameters -

estimated by nonlinear least squares. The methods com- _Vf) X r,19)2 - RIS)TR19)
pared are the lack-of-fit method, the likelihood method, -I

antI three variants of the linearization met hod. with R(if denoting a column vector with iA component

The need for confidence regions and intervals com- r,(6), and R(O)T denoting the transpose of Rie).

mnoly arises in data fitting applications, where a response In our study, we assume that the model is correct
variable y, observed with unknown error i, is fit to m and that the errors are normal, independent, identically s

fixed pretlicttr variables x, using a function f(x,:S) which distributed random variables with zero mean and vari-

can be either linear or nonlinear in the p parameters *. ance &
2, 

i.e., distributed as N(O,d' 1). Then, the least

The fuimction f(x,;@) is linear in 0 if it can be written squares estimator S is the maximum likelihood estimator
of the parameters S of the p-variate normal density func- - -

f(x,;$) = X, s ,,S,, i- ,..^,n. tion,

i-i L(Y)- (2wd')- & re- r /
2) . -.

Ot hmrwise, it is nonlinear. The methods analyzed in this
study are identical when f(x,;g) is linear in 6; otherwise where Y is a column vector with iA component y,, and i

they are not. is a column vector with ih component i,.

When the error i, is additive, the response variable Nearly normally distributed errors are, in fact,

can be modeled by encountered quite frequently in practice. This is because
measurement errors are often the sum of a number of ran-

g,- f (x,;i)+ i,, i-1.n, dona errors from unknown sources, and, by the central

where S denotes the tiue but unknown value of the limit theorem, the sum of these errors is approximately

parainet(ers. The least sqLuares estimator of 6 is the normally distributed whatever the distribution of the

paranmeter value. denoted 6, which minimizes the sum of idividual errors that make up the sum.
the squares of the residuals, where the residuals, r,(#), are In practice, the estimated values of the parameters .
estimates of the random error, i,, will not equal the true values i because of the random

errors, i,, in the data. Since 6 is a random variable, how-
,( - f(x,;$) ever, it may be possible to indicate with some specific

iC,,n tribotion or the National Ihr, m of Stindards and not Pbject to copyright in the United States. "

-Thtiu research supported by ARO -,ntrart D D.AG 29-84-K-0140
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probabiIity I-a in what region about 6 we might reason- confidence regions and confidence intervals constructed

ably expect i to be. Such regions are known as using a given method. The actual percent of the nomi-
lO0-(I-a)( confidence regions. A joint confidence nally 100lI-a)% confidence regions and intervals which
region about all of the parameters is defined using a func- are found to contain the true value is known as the
tion observed coverage. The observed coverage will generally,..

C.Y- a region in RP' depend on the method used to construct the confidence
whIt ichIt sat is fies regions and confidence intervals, on the nominal

confidence level, I-a. on the degree of nonlinearity of
%r (the function, f(x,;'), and to a small extent, on the

Similarly, a confidence interval about an individual number of replications in the simulation. If the experi-
parameter is defined using a runction ment used to generate, the data is repeated a large

C,,..Y- an interval in R number of times under the same conditions, and if CR.
which satisfies and (CI,. are exact and the model is correct, then the

observed coverage will approach the nominal coverage.
Pr[I ,[ CI..(Y) ] - - When CR. and Cl,. are only approximate. the observed

The above definitions state that, before the data are coverage will not necessarily approach the nominal cover-

sampled, the probability that the confidence regions and age, although one would hope that the difference between

confidence intervals to be constructed will contain the the observed and nominal coverage for a reasonable

true parameter values is 1-a. Thus, if we repeatedly approximate method would be small for most functions.

draw samples and construct confidence regions and inter- No similar study of this magnitude appears to have
vals about the least squares estimates for each sample, been reported previously. The properties of confidence
then in the long run I00.(I-a)% of these confidence regions and confidence intervals computed using the
regions an( intervals should contain the true values. Pro- linearization, likelihood, and lack-of-fit methods have
cedures that, for all runctions f(xs;6) and confidence Iev- been analyzed by several authors, including Jennrich
els I-a. are statistically guaranteed asymptotically to (1959), Beale (1960). Guttman and Meeter (1965), Gallant
contain the true value 100.II-a)"o of the time are called (1976), Duncan (1978). and Bates and Watts (1980).
exact; all other procedures are called approximate. While the literature includes numerous warnings regard-

Various methods have been proposed for calculating ing the possible inaccuracy of the approximate methods,
confidence regions and intervals ror parameter estimation it contains little empirical data to illustrate the size of

e rthe discrepancies between observed and nominal coverage
by nonlinear least squares. These include several variants that might be expected. In those studies which do contain
of the linearization method, as well as the likelihood and e de g allackof-it ethos. See€ g Bar {174} Galant(190}, empirical data on confidence regions and intervals, the

mlargest, reported differences between the observed and(7,ant
Draper andi Smith (1981).] We review all these methods largest rore iffrnces betwee the observe an
briefly in Section 2. They all are equivalent, and exact, nominal coverage is only 9% for a 95% cofidence region --

for linear models. For nonlinear models, only the lack- computed using the linearization method, and is even

of-tit method for computing confidence regions is exact; smaller for the likelihood method 10aflant (1970)), In

the other methods for computing confidence regions and many practical applications, potential differences of 9%
might, not be cause for concern. Evidence of much larger

all the methods for computing confidence intervals are differences, however, would indicate the need for
approximate. The linearization regions and intervals improved methods. Our results provide such evidence.
appear to be the most approximate for nonlinear models,
but they also are far less expensive to compute than the Our Monte Carlo study has several purposes. First,
)ikefihood or lack-of-fit regions and intervals, and are the we wish to determine whether the observed coverage of

lredomiIlawi. methods implemented in production the linearization method is significantly affected by how
oftware. Some nonline.r least squares packages, includ- the variance-covariance matrix is computed. Second, we

ing NI.2!;Ol, [Dennis, Gay, and Welsch (1981)], include wish to determine whether the approximate confidence
three variants of the linearization method, which differ regions and confidence intervals constructed using the
only in that the variance-covariance matrix of the linearization and likelihood methods, and the approxi-
estiniatoed parameters is approximated in three different mate confidence intervals constructed using the lack-of-fit..":
ways. namely method have observed coverage significantly different

from nominal. In particular, we want to know whether
." (J(Tj{) "'t, the frequently used linearization method is significantly

better or worse than the more expensive likelihood and
s
" H() - , lack-of-fit methods. Section 3 describes how we designed

our study to answer these questions. The results are
or presentedl and discussed in Section 4. We have also inves-

ll- i )-I (J()TJli)) Hi)-', tigated how effective the diagnostics of Bates and Watts
where s(S ,V/n-p) is the estimated residual van- (1980) are in predicting when the confidence regions pro-

w 2 duced by the linearization and likelihood methods should
a.,ce: J*() is the larobian of f(x,;S), i- 1,,, at ; and be reliable; this part of the study is the subject of Section
H+0 is tie Ilessian of S(#) at 6.

Serlions 3-6 of thIs paper describe and analyze a Our study is oriented toward nonlinear least squares
Monte (arlo stuidy that compares all of these methods for software developers who need assurance that the methods
computing confidence regions and intervals on 20 non- they implement are reasonable for a wide variety of prob-
linear models. The study is used to empirically observe lenIs. We make only the customary assumptions that the
how often the true parameter values are contained in the

,'~~~~~.'.." ......................%"...':,.,.".."-..'.,** :'.s'. .

....................................................................'*%~***~- . -. * . '%-
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model is correct and that the errors are normally distri- ': 23
btted. We do not assume that we can change the -0 

< -I, i._X) t_1 2

representation of the parameters, e.g., by reparameteriz- where (XTX), - i is the (j,j) t h element of the inverse of
ing 0 as log(O), in order to reduce the difference between XTX. The limits of this confidence interval can be shown IF
the observed and nominal coverage, because reparameter- to be those values 0- which . " -,
ization is not a technique that can be routinely imple-
menled by software developers who have no control over maximize (0,- ,)2 subject to (2.4) -" *~

the functions analyzed. [leaders interested in using
reparamelerization to improve their results are refered to S(e)-S(6)= Se) A2 Fl,.P. -
lRatkowsky (1983). t-P-)"i.

The conclusions we draw from this study are Nonlinearity and the Solution Locus
presented in Section 6. The first, conclusion is that among
the variants of the linearization method, the one using V,
is the best choice because it is the cheapest, and is always e(x,es i s 1. , consists of all points with coordinates
at. least as reliable as the other two variants and some- expressible as
times more reliable. The second conclusion is that even (fOx 1 ;),(x2;@),...,f(x.;S))
Sthe best linearization method can be very poor;
confidence regions with observed coverage as low as where the x,, i- i.. n, are the fixed values of the predic-
12..1% for a nominal 95% region, and confidence intervals tor variables, and S is allowed to vary over all possible
with observed coverage as low as 75.0% for a nominal values of the p unknown parameters. The solution locus
95r interval are reported. In contrast, for each of the is planar if there exists a reparameterization of I(x,;S)
datasets tested, the confidence regions and confidence that makes the function linear in the p parameters. Oth-
intervals constructed using the likelihood method and erwise, the solution locus is curved.
lack-of-fit methods are quite close to nominal. Finally, A coordinate grid on the solution locus can be . -
our study indicates that the diagnostics of Bates and formed by tracing the paths obtained when each parame-
Watts (1980) appear quite successful at predicting when ter is individually allowed to vary while all other parame-
linearization confidence regions will be poor. Our recom- ters are held fixed. The coordinate grid is curvilinear
mendations as to how nonlinear least squares software whenever the function I(x,;O) is nonlinear in one or more
should calculate confidence regions and intervals, in light of its parameters. It is linear only when the function
of these conclusions, also are given in Section 0. itself is linear.

2. Background Curvature of the solution locus is called "intrinsic"
curvature JBcale (1960); Bates and Watts (1980)].

This section briefly discusses methods foR" construct- Curvature of the coordinate grid is called "parameter-
ing confidence regions and confidence intervals. First, we effects" or simply "parameter" curvature [Bates and
give a very quick survey of confidence regions and Watts (1980). Intrinsic curvature is not affected by -
confidence intervals for linear least squares. Next, we reparameterization. Parameter-effects curvature is.
describe the two different ways function nonlinearity can Linear functions have zero paramete,-effects curvature
affect the solution locus. Then, we review the lineariza- anl zero intrinsic curvattre. Nonlinear functions always
tion, likelihood, and lack-of-fit methods for constructing have nonzero parameter-effects curvature, and can have .'-
confidence regions and confidence intervals when the either zero or nonzero intrinsic curvature, i.e., a planar or
model is nonlinear. For a more complete discussion, see curved solution locus, respectively.
Bard (1971), Gallant (1976), Draper and Smith (1981), or
Donaldson (1985). Nonlinear Least Squares

When the function is nonlinear, the least squares
Linear least squares estimators of the parameters cannot in general be

When f(x,;O) is linear in the parameters 6, then expressed in closed form, and must instead be computed
-fx,;S) - x, 0. Consequently, the Jacobian of F(S) is X, by iterative techniques. Construction of exact confidence
an is by p matrix with i" row x,. If we assume that x is regions and confidence intervals also is much more
of full rank, then XTX is nonsingular, and the linear least difficult, and so approximate methods are frequently
squares estimators can be expressed in closed form by used. The leading methods, linearization, likelihood, ands e c be xpr in c lack-of-fit, are described briefly below.

Linearization methods. Linearization methods .

\hen -N(O,o& I), a l00.(l-a)% confidence region for constructing confidence regions and confidence inter-
about 0 contains those values i for which vals assulie that the nonlinear function can he ade-

quately approximated by an afline, or linear, approxima-
S() -S(O) ! ap to,,_,. (2.1) tio totlie function at the solution. That is, this method

quaton(.ieqivaen to assumes that the solntion locus is planar, and that the - ,
coordinate grid is linear throughout the area to be

(ej)T XTX (i_) : 82p . (2.2) covered by the confidence regions and confidence inter-

for all linear models, which shows that the shape of the ells. il.r this assi in c tnie , linear least sares theory
confidence regions about 0 is ellipsoidal for all linear tells is that! tle coufidece region about consists ofmodels, those vahues I for shirh "

A I00(I-at) confidence interval about 0, contains ("-) (-( P ".-P.t-o "--.

% I hose values , for which

% 7.-.
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while a confidence interval about I' j ... p consists of method confidence interval about i as the interval
those values 6, for which bounded by the points which

1 . - ; , 1 12 ts, _ 1.-. 2, maximize (0,A,)2 subject to

where V is the estimated variance-covariance matrix of -
the parameters, and V,, is the (j,j)lh element of ,,.,, *,

lThree approximations to V are frequently used. This confidence interval is the projection onto the
These are appropriate parameter axis of the above region, and is

analogous to equation (2.4) for confidence intervals in the
8 g2 (J Tj())- (A) case of linear least squares.

When the solution locus is planar, the confidence
8 is H() - 1, (B) regions (but not the confidence intervals) constructed

and using the likelihood method are exact. In addition, likeli-
hood method confidence regions and intervals have the

il, a2 H(O)-1 (J(i)TJ()) H(i-, (C) desirable property that they are constructed from con-
F(t) at i; H(i) is the Hes- tours of constant likelihood, and that the regions and

where J() i the Jacobian ofFintervals are not affected by reparameterization of the
sian of S(O) at 0; an( a2 is the residual variance, function f(x,:*). Thus we might expect the likelihood
8' - Si)/n-p . Approximation (A) is the most com- method to produce confidence regions and confidence
son apIroximatiou to V, and is the direct analog from intervals with observed coverage closer to nominal than
linear least squares t eory. Approximation (B) can be iterwthose roducd using the linearization methods. low-
obtained using maximum likelihood theory, and can be eve "+endiked metho hsneral metods o-
viewed as using observed rather than expected informa- ever ie likelihood method has several practical disad-vantages. Both the confidence regions and confidence
lion in forming the variance-covariance matrix. Approxi- intervals produced using the likelihood method can be
mationdisjoin an unbounded because the contours of a non-
S(G). JFor a more detailed discussion of these variants, linear function can be isjoint and nbounded. The t o r n

see Bard (197.1) or Donaldson (1985).] When certain regu- nethod also is very expensive to use, and, when the data
larh v condition% are met [Jennrich (1959)1 , these approxi- meho aloi eyexesv ousad hn aaV._lay c t iarrays are large, it, can be awkward to publish the infor-
mations to V asymptotically will approach the true mation necessary to reconstruct the confidence region
variauce-covariance nmatrix of the model. Note also that because this information is not succinctly summarized as
these approximation dliller only when it is in the case of the linearization method.

":re a~f(x1;S)' """
r,(6) Lack-of-fit method. The lack-of-fit method can be

used to produce exact, joint. confidence regions for all p of

is nonzero. In particular, for linear functions, each of the parameters, and to produce approximate confidence
trhese representations of Via equal to intervals and confidence regions for subsets of the param-

82 (J()rJ())-' - 81 (XTX)-I eters. An exact. 100.( - e)% confidence region consists of
all values 6 such that

linearization methods have the advantage that their
resulting confidence regions and intervals are simple and (T
inexpensive to construct, and that, they produce bounded, R(4) (lP(1 ))R(1) n-p
convex confilence regions. In addition, the information where
needed to construct confidence regions and intervals using
this nethodI can be parsimoniously summarized by the p P = J(6)(J(lTJ(6)T)-(
by p matrix V, and is well understood by users familiar Note that, the lack-of-fit method does not require that the
with linear least squares. Because the linearization least squares solution be found prior to constructing the
methods assume that both the intrinsic curvature and the confidence region. Similarly, a confidence interval for the
parameter-clfects curvature of f(x,;@) are zero, however, j' parameter consists of those values '# for which there
we expect that. the linearization methods could sometimes exists values of O, k= I.j-hj+ I....p, such that for
produce observed coverages very far from the expected these p parameter values, i,
nominal coverage. The results of our Monte Carlo study
show this to be true. .( , i- (O

Likelihood method. The likelihood method is S.(i(I))(n-p) -

another approximate method for producing confidence
regions and confidence intervals. The likelihood method where S J; )) is the residual sum of squares obtained
confidence region about 6 consists of those values W for when R(i) is linearly fit to all the columns of J(i)
which excluding the j', and S'(6jI)) is the residual sum of

s 2 p _stiares obtained when RIO) is linearly fit to J(i). This
Thisi s ~i)- s(I) p F,.._. iinterval is exact if f(x,:o) is linear in

This is analogous to equation (2.1) for confidence regions 81, k- - .j- lj+ I.....p; otherwise it is approximate.
for the parameters or a linear function, although when TIhe lack-of-fit method is even more expensive to use
f(x,Ol1 is nonlinear in the parameters the resulting than the likelihood method. and, as is the case for the
confidence region is no longer ellipsoidal. The likelihood likelihood methiod, the information needed to constructr

the confidence regions cannot be succinctly summarized
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for publication. Also, the confidence regions and Note that substituting a new realization of the data
confidence intervals constructed using the lack-of-fit for one which could not be completely analyzed because
method are guaranteed to contain every minimum, max- either (a) the nonlinear least squares algorithm did not
imum, and/or saddle point of the likelihood surface. This converge, or (b) the test statistics could not be computed IF
makes the lack-of-fit method structurally undesirable. for every method being analyzed, is a form of censoring

which will bias the observed coverages obtained. In our
3. The Monte Carlo Study analysis, we adjusted the value of & for each dataset so

that every realization could be completely analyzed, and

This section briefly describes how our Monte Carlo therefore the results reported in this paper are not

study was constructed. Full details are provided by derived from cetsored data.p
Donaldson (1985). We computed the observed coverage for four nomi-

The Monte Carlo method uses the computer to simu. nal confidence levels, 0.50, 0.75, 0.95, and 0.99. In thispaper we only include our data for the level 0.95,---.'
late the results of repeating an experiment many times in although we comment briefly in Section 4 on our results
order to obtain a large sample from which the statistical a g c t f to u lat the other levels. Data for the full study are given in
properties of a system can be examined. For each simula- aheo level. a ft u d r v
tion, we first generated the errors and response variables. Dnlo(-)
The errors, i, were produced using the Marsaglia and The references for the datasets used in our Monte
[sang pseudo-normal random number algorithm (1984) as Carlo study are given in Appendix A and described in
implemented by lames Blue and David Kahanar of the detail in Donaldson (1985). With only two exceptions,
National Bureau of Standards Scientific Computing Divi- the functions and data which comprise our datasets haveI
sion. The response variable, Y, was then constructed so been taken from Ratkowsky (1983), Ilimmelblau (1970),
that its ihl component is Guttman and Mecter (1965), and Duncan (1978). The

standard deviation of the errors of some of tile datasets
V. - (x,;)+ii . has been adjusted in order to allow us to successfully

Then t lie least squares estimate, , was calculated using analyze each realization of the data for each dataset. The

NI2SO. an unconstrained quasi-Newton code for non- two datasets not, taken from the published literature are
linear least squares [Dennis, Gay, and Welsch (1981)]. identified as A(A and 9AA(;. Dataset 8ACA was
Starting values for NI,2SOL were set to the true values of created especially for this study by generalizing function
the parameters. 6, and the stopping criteria for the con- 3 to a larger number of parameters. Dataset 9AAG
vergence tests based on the relative change in the param- involves a microwave absorption line function taken from
eters and in the sum of squares both were set to 10- . a consulting session at the National Bureau of Standards

Finally, for each confidence region or interval in Boulder, Colorado.

method and each derivative configuration being analyzed, The number of parameters in the 20 datasets
we recorded whether the true values of the parameters analyzed range from 2 to 8 and the ratio of the number of
were contained within the confidence regions and parameters to the number of observations range from
confidence intervals for this realization of the data. 21.12 to .3/5. While these datasets are often troublesome,
leterinining whether the true parameter values lay they are mostly real world problems that have not been
within the confidence regions and confidence intervals made artificially difficuilt.
ahout the least squares estimates fortunately did not Each dataset was analyzed twice to allow us to
require that we construct the fll confidence regions and examine the effect, of increasing the standard deviation of
confidence intervals for each confidence level and method. the errors. In the first analysis, i - N(O,6 2 I); in the
Instead, we simply calculated the smallest confidence second analysis, I - N(O,(,,'6)2 I), where "q is approxi-
level, I-wquell that a loo-(I-w)b confidence region or mately tie largest number 9 10 for which every realiza-
confidence interval constructed using the method being tion of the (ata could be successfully analyzed. The
analyzed will contain the true parameter values. When methods analyzed in the second analysis were the same as
w>&, the true value (lid not lie in the 100.(-u)0 in the first except that variants 13 and C of the lineariza-

confidence region or confidence interval: when co a, it tion method were excluded from the second analysis
did. The values I-a were obtained using the hypothesis because, when 'n > 1.0, we were frequently unable to com-
tests corresponding to the formulas for confidence regions pute tle required test, statistics using these two variants.
and intervals given in Section 2, and the appropriate
cumulative distribution functions; the procedures are Computation of the linearization method and the
described in detail in Donaldson (1985). The cumulative lack-of-fit metthod requires that certain derivatives be

distril ution functions were obtained from the STARIPAC available. The lacobian of F(S) is used by both the
subprogram library [Donaldson and Tryon (1983) . linearization and lack-of-fit met hods. Variants 11 and C ofthe linearization method use the Ilessian of S(9) as well.

The observed coverage, y. for the particular nomi- In practice, analytic dlerivatives often are not available.
nal confidence level, method and system uner analysis is Therefore, in our study each method was implemented
the percentage of the total number of realizations of the and analyzed using three different derivative
data. N. for which w !r a. When N is large, the standard configurations. These configurations are (I) tIme .acobian
deviatiou of -Yo can be approximated using the normal and Ilesian both approximated by finite-dihferences, (2) " -
approximation to the binomial distribution. In this study the .arobian conpitec analytically anu tle Ilessian com-
we used N=500, so the maximum standard deviation of puted by liie-diitherences, and (3) both the .acolbian and
the observed coverage at any coverage level is approxi- the Ilessian computed analytically. For derivative'
matelv 2.2' ,. configiiration (II and (2), the variance-covariance matrix

nceded by the linearization method was returned directly
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from NI,2SOL. For configuration (3), it was constructed confidence regions and confidence intervals is exact, we
a outside of NL2SOL. For details on the formulas used to expect tihat tie observed coverage for 95% of all possible

compute the finite-difference derivative approximations, datasets will lie within this confidence interval.

see Donalhlson1985). innglenObservations. Figures I and 2 show that the

We ran our Monte Carlo ludy in single precision on lack-of-fit and likelihood method confidence regions are
a 60 bit word length computer. All subroutines extracted quite reliable, anti that the results are not affected by use
from other sources were used without modification except of finite difference derivatives. In all our tests, they pro-

for NL2SOL, which was changed for this study in two duced observed coverages which seldom vary from nomi-

important ways. First we disabled the two tests within nal by an anount that is significant at the 5% level. In

NI.2S0I. used to detect near singularity. Second, we used fact., for these datasets, there is only one instance

the STAPI'AC front end to NL2SOL. With this front dataset 3AAA. i - N(O,ml o)
2 I)) where the difference

end, the finite difference approximation to the Jacobian is between the nominal and observed coverages produced
computed with the optimal derivative step sizes selected using these two methods is greater than 5%, and in this

using tile algorithm developed by Schnabel (1981), thus instance, the observed coverage is greater than nominal,
. maxinmizing the number of correct digits in each element not, less.

-of the finite difference Jacobian. The three variants of the linearization method, on -

tile other hand. frequently produced far less reliable -I

4. Results and Observtions confidence regions, although, as discussed below, the . 4.

results still do not appear to be affected by the use of
This section presents Ithe results of our Monte Carlo finite-difference derivatives. The difference between the

t stud y of tile lack-or-fit method, the likelihood method, nominal and observed coverages obtained using the
and tile three variants of the linearization method. The linearization methods often are considerably more than
section is divided into a discussion of confidence regions 20'i., which is a dilTerence that many if not most users
and confidence intervals. For each, we also make a would find unacceptable.
nuumber of observations about (he results. The eonelu-

By comparing Figure 1 to Figure 2, it is apparent
sions %e draw from our analysis are discussed in the next that increasing the variance of the errors does, in fact,

chapter. increase the differences between observed and nominal

. 'The material in this chapter includes a number of coverage for all methods. Our tests at confidence levels
figre. T'hese are printed at the end of the paper. 0.50, 0.75. and 0.99, which are not reported in detail here,

also showed that the spread between the observed and
Confidence Regions nominal coverage obtained using the linearization method

Results. The results for nominally 95% confidence increases as the nominal confidence level is increased.

* regions ronst ruct ed using each of the methods analyzed in The large differences for some datasets between the
this study with i- N{O,6

2 ) are graphically displayed in observed covwrage of confidence regions constructed using
Figure I. For each dataset, the observed coverage is plot- the likehiood method and those obtained using the
ted against the method and derivative configuration used linearization method may be explained by the difference
to obtai n it. in the shape of the two regions. The likelihood method

The three derivative configurations are labeled DCI, confidence region corresponds to the boundary and inte-

l)C2, and l)(C3 in these and the following figures and rinor or a contour of the sim of squares surface, i.e., a con-

tables, as well as in Appendix 13, llere DCI denotes use of tour or constant likelihood, whereas the linearization

finite difference approximations for both the Jacobian and method confidence regions are always ellipsoidal. We

the Ilessian. l)C2 denotes use of analytic Jacobian and plotted these contours for various datasets, and the

finite difference Ilessian, and l)C3 denotes use of analytic difference sometimes were very large. Examples for
I:.hcoluiin and Ilessian. Since the computations required datasets 3AAA and J4AAG are given in Donaldson

to calculate the lack-or-fit method results and the likeli- (19851.
- hood icthod results using derivative configurations DC2 Figure I also indicates that the observed coverage

and l)(3 are exactly the sane, these resltS are displayed obtained using variants A. 13, and C of the linearization
toget her, method are nearly identical. The results of two-sided

Figure 2 shows the analogous results for paired-sample f-tests indicate that there is no statisti-

li N0,(Oq dr)- I). As noted in Section 3. variants 13 anl ally significant differences at the 5% level between the
C' of the linearization muethiod are excluded from the observed coverages obtained using any of the variants of

;,nalysi, displaved in Figure 2 because computational ithe linearization method with any of the derivative
• configurationsq. The samr result,, were obtained for our.

dillicillies nsere encountered for these variants when tie tests at the 0.50, 0.75, and 0.99 confidence levels.
variance or Iie errors was increased.

A conservative 95%' confidence interval about the Confidence Intervals
nominal confidence level is indicated on each plot by a
pair of horizont1al lines which represent thle values, Results. Figures .3 and .1 providle information for

confidence intervals which is analogous to that shown in
100-11-af-± 4... where .1.A is two times the maximumi figures I and 2 for confidence regions. Tle observed coy-
observed coverage at any coverage level. This confidence

erages plotted are the smallest of the p confidente inter-
interval provides a qu(Iick means of determining whether val coverages obtained for each dataset. Figure 3 displays
:i. of the ohuserved coverages for each method are the observed confidence interval results for nominally
significantly different from the nominal confidence level 95% confidence levels, when @- (Oo

"2 |
); figure 4 shows

at the 5i level. When the method used to construct the the r es l e when i-N (0,621) e 4-q. -.

t lie results when i- N(O,(il 6)
2 

1), exc Iud inrg
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linearization method variants B and C as was done for (derivative configuration DCI) then the differences in
the lineariraion method confidence regions, results are often significant.

Observations. Figure 3 shows that for confidence Comparing Figures 3 and 4 shows that as the vari-
intervals, the best results are obtained using the lack-of- ance of the errors is increased, the differences between .

fit and likelihood methods, and the worst results are observed and nominal coverage also are increased, as was
obtained using the linearization method, as was the case the case for the confidence region results. Ilowever, this
for confidence regions. The lack-of-fit and likelihood increase is not as pronounced for confidence intervals as
methods produce confidence intervals which seldom vary for confidence regions. The results at confidence levels
from nominal by an amount that is significant at the 5% 0.50, 0.75, 0.95, and 0.99 also showed that as the nominal
level, and never are less than nominal by more than confidence level approaches 100%, the spread between .',

5.0't. Again, use of finite difference Jacobians does not observed and nominal coverages obtained using the
appear to affect the results for these two methods. linearization method is increased.

The three variants of the linearization method, on
the other hand. frequently produce far less reliable 5. Diagnostic tools

confidence intervals than the lack-of-fit and likelihood
methods. Disturbing differences between observed and The preceding section demonstrates a pressing need
nominal coverages occur when each or the variants of the for diagnostics to warn users when the commonly used
linearization method is used to construct confidence inter- linearization method confidence region will not have ade-
vals. The observed coverage for a nominally 95% quate coverage. In addition, it would be useful to have a
confidence interval is as low as 75.0%, 44.0%, and 10.8% warning to indicate when the approximate likelihood
for variants A, B. and C, respectively. For most, of the method may be inadequate. Bates and Watts (1980) have
datasets tested in our study, however, the span between proposed measures of nonlinearity that provide such diag-
observed and nominal coverage produced by the three nostics.
variants of the linearization method is considerably less According to Bates and Watts, when their relative
for confidence intervals than for linearization method measure of parameter effects curvature is small compared
confidence regions constructed about the parameters of to the critical value (Fe s. p -

:-2,then the linear coor-
the same dataset. This is especially true when derivative dinate grid assumption is valid over the region of interest,
configurations DC2 and DC3 are used. and therefore the linearization method confidence region

One reason why linearization method confidence should be adequate, Similarly, when their relative mCas-
intervals have better coverage than linearization method ure of intrinsic curvature is small compared to the same
confidence regions is that, when the parameter estimates critical value, then the assumption that the solution locus
are correlated with each other, a number of points may be is planar is valid over the region of interest, and therefore
included in the linearization method confidence intervals the likelihood method confidence region should be ade-
but not in the confidence regions. Note, however, that if quate. " '-
a confidence interval was computed for the linear combi-nai n owh a ames gv n b h i e v c In Figure 5 we plot the 20 confidence region observed r .
nation of the parameters given by the eigenvector coverages obtained using linearization method variant Acorresponding to the minor axis of the linearization with analytic derivatives (derivative configuration DC3) " -"-

method confidence region ellipsoid, then the linearization i and Wtat in -.3.

method confidence interval observed coverage should o iW
approximately equal that of the linearization method tive measure of parameter effects curvature. Likewise, in
c figure 6 we plot the corresponding 20 likelihood method
computed the linearizati ont confidence interval confidence region observed coverages against the Bates

observed coverage for this linear combination of the and Watts relative measure of intrinsic curvature. The

parameters. In every case, the observed coverage we relative curvature measures were computed at the true

obtained for the confidence interval about this linear parameter values using the true variance of the errors In

comnbinat ion was approximately equal to that of the these plots, we have sraled the measures of parameter
effects curvat tire aud intrinsic curvature by dividing the

linearization method confidence region observed coverage, easurythe aprite cr vaue. Ts d ing themeasure by the appropriatre critical value. Thus, in both °""

The use of finite differences to approximate both the of these plots, a scaled curvature measure less than I
lacobian and the Ilessian appears to significantly degrade indicates the relative measure was less than the critical
the confidence interval results for linearization variants B value, while a value greater than I indicates the curva-
and C. Figure 3 shows that, while there is no striking ture exceeded the critical value.
difference in the results obtained using the three variants It is clear from figure 5 that the Bates and Watts
of time linearization method with derivative configurations arameter effects cijvature measure is strongly correlatedpaCm2c andct rurva varant meaur and Ctonl deraerrelfaate
)o2 and DC3, variants B and C degrade significantly with the observed coverage obtained using the lineariza-

more than variant A when using D)CI, i.e., finite tion miethod. In fact, for our dats as the parameter -

difference Jacobian and Hessian. A two-sided paired- effects curvature increases, the observed coverage for the

sample t-test was used to determine wh-ther, for a given linearizatiou methi confidence regions decreases nearly "

derivative configuration, the observed coverages obtained m cfe re a

using tile different linearization method variants are sta- monotonically and linearly as the logarithm of the scaled

tisticnly different at hoe 5va significance level. The parameter effects curvature. Furthermore, in all datasets

results iidlcate it fat when derivative configuration DC2 where the parmucter effects curvature is less than the
n( obtained critical value, the observed confidence region is very close

an 1 DC3 are uisedl, the differences in the results!baie
using variants A. B, and C are seldom statistically to nominal, while in all cases where the parameter effects

significant at the 5" level. but that when the lacobian curvature is greater than ten times the critical value, the
and Ilessian are approximated using finite obfferences observed coverage is unsatisfactorily low. Datasets with

• ui f t-e
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parameter effects curvature between one and ten times than variants B or C, which use
tfie crit ical value had observed confidence region coverage 02 H(j)

~  
(8.2)

between 83.2% and 91.6%. From these results, it appears k 2(
that the Bates and Watts parameter effects curvature is a and
reliable, if perhaps stringent, indicator of when the - ( H i (8.3)
linearization method will produce reliable confidence " H 1 ) (J(j)rJ($))H(S) -

,
regions. respectively. Variant A is simpler and less expensive

Figure 6 shows that all but one of the 20 datasets because it only requires the Jacobian or the model func-
tested in this study have intrinsic curvature which is less tion at the solution and not the additional second order
than the critical value, which means that each of these terms that are also required to form the Ilessian. It is
datasets is nearly planar. For nearly planar datasets we more stable because it can be formed by inverting the
expected good observed coverage from the likelihood upper triangular factor 11 of the QR factorization of the
method, and, as figure 6 shows, that is what we got. Since Jacobian rather than by calculating the inverse of the
none at our dhatasets have high intrinsic curvature, how- Hessian; the former calculation can be expected to lose

ever, we do not know how the likelihood method will per- roughly half as many digits as the latter in finite precision
form when the solution locus is not nearly planar. We arithmetic.
cannot assume that the accurate resu!ts obtained in our The linearization method is not, always an adequatestudy using the likelihood method will necessarily carry method for approximating confidence regions and '

over to datasets with large intrinsic curvature. coifidenee intervals for the parameters of a nonlinear

Cook, Tsai and Wei (1984) provide an example model, however. The results presented in the preceding
which has scaled parameter effects curvature of 934.5 and section show just, how poor the linearization method can
scaled intrinsic curvature of 8.4. Both the parameter be in some cases. Although there are many examples
effects curvature and intrinsic curvature of this dataset where the liiearization method's observed coverage
exceed any curvature measure we observed in the 20 differs fron noiinal hy only a very small amount, there
(lasets in our study. For this dataset, we computed are also many cases where tlie observed coverage is far
observed confidence region coverages of 19.0% and 95.0% lower than the nominal. In our tests, the best lineariza-
using the linearization method and likelihood methods, tion method variant, A, produced observed coverages as
respectively. While the linearization method confidence low as 12.1% for nominal 95% confidence regions and -
region observed coverage is very far from nominal as we 75.0% for nominal 95 confidence intervals..
would expect based on the parameter effects curvature of Users will continue to use the linearization method,
this model, the likelihood method confidence region however, because it is readily available in software pack-
observed coverage is not. We cannot conclude anything ages and provides a concise representation of the
from this one observation. It is clear, however, that addi- , information needed to construct confidence regions and
tional analysis of tdatasets with high intrinsic curvature intervals. The erratic results obtained in our study when
would be useful to further assess the effect of a non- using the linearization method lead us to conclude that
planar solution locus on the likelihood method, users of nonlinear least squares software must be helped

to cautiously assess the results they obtain using the
6. Conclusions linearization method. The results of the preceding section

show that the diagnostic tools proposed by Bates and
Based on our computational study, we can draw con- Vails (1980) are very successful in indicating cases where

clusions about : i) the comparison between the three the linearization method confidence regions are likely to
variants of the linearization method; ii) the reliability of be unreliable. In these cases, more reliable methods, such
linearization methods for calculating confidence regions as the likelihood or lack-of-fit. methods, are required to
and confidence intervals; and iii) the reliability of the produce accurate confidence regions or intervals.
likelihood and lack-of-fit methods for calculating Our study shows that the lack-of-fit and likelihood
confideuce regions and confidence intervals. methods bothIi pro(Iuce observed coverages acceptably

\When using the linearization method to construct close to nominal in every test case. Although the
confidence regions and intervals, our Monte Carlo study difficultics and expense associated with using these two
has showkn io clearcut difference in the observed coverage methods to cornpuitle confidence regions make it unlikely
of one variant as compared to another. In our tests, the that they will ever routinely replace the commonly used
only statistically significant difference among the results linearization met ho0(d for this purpose, they appear to be a
produced by tle three linearization variants was in con- reliable alternative that should be considered when diag-
srrlicdng confidence intervals with finite difference laco- nosties show that linearizalion confidence regions are
bians and ilessians: here variant. A was superior to var- unreliable. It is not as difficult and expensive to con-
ants I and C. We found no empirical evidence that one srncl confidence intervals using tle lack-of-fit or likeli-
shoulu prefer variants IB or C, even though they may be hood met hods, and we believe that prodiuc.rs of nonlinear
app 'aling from a tlheoretical point of view. Therefore we least squares soflware should consider this possibility.
coihlide that variant, A of the linearization method, ((oustrucling these intiervals requires the solution of a
whichI is comlUited using series of noninearl.v constrained optimization problems;

*
-

it al:y be nv'es ary Io constr l special purpose soft ware
to solve thew- problems as efficienily as possible.) Per-

is the I)est variant to use for constructing hoth confidence forming hypot hosis les s using lie likelihood or lack-of-fit
regions and confidence intervals, because it is simpler, methods is rompUtationally simple for both confidence
less expensive, and more nimereicaly stable to compute regions and inlervals. so we recommend that one of these

tno method, be employed for hypot hesis tests whenever
possible,

. . . . . .
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Users may prefer the likelihood method to the lack- Because of the uncertainty Lssociated with the
of-fit method even though it is approximate and the linearization and likelihood methods, we also have briefly -
lack-of-fit method is exact, because the likelihood method examined how the Blates and Watis curvature measures
ha' more desirable structural characteristics than the relate to the confidence region observed coverages we I
lack-of-fit method. Our study provides no empirical evi- obtained in this study. Our results show that the Bates

,*.." dence that the results produced by the likelihood method and Watts parameter effects curvature appears to provide
are inferior to those produced by the lack-of-fit method, excellent indication of when the linearitation method may .,
rThis does not guarantee that similar results will be produce less than satisfactory results. Our results are :,-

t-1
obtained on other datasets, however. In particular, the as conclusive, however, about the relation between intrin-
results of the diagnostic test proposed by Bates and sic curvature and likelihood method coverage since the
\ Watts showed that, all our datasets have low intrinsic cur- solution locus for all of our datasets were nearly planar.
vatire, which is precisely the situation when likelihood
met hods are expected to be very reliable. The additional References
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CURVATURES FOR PARAMETER SUBSETS IN NONLINEAR REGRESSION%

R. Dennis Cook, University of Minnesota; Miriam L. Goldberg, University of Wisconsin

The relative curvature measures of nonlinearity proposed by Bates and Watts (1980)
are extended to an arbitrary subset of the parameters in a normal, nonlinear
regression model. In particular, the subset curvatures proposed indicate the validity r
of linearization-based approximate confidence intervals for single parameters. The
derivation produces the original Bates-Watts measures directly from the likelihood
function. When the intrinsic curvature is negligible, the parameter-effects curvature
array contains all information necessary to construct curvature measures for para-
meter subsets.

Key Words: Confidence regions, Curvature measures, Least squares, Likelihood.

1. INTRODUCTION for either rnor r' indicate that this

Confidence regions for parameters of a approximation is questionable. These ideas are

normal nonlinear regression model are extended and refined by Bates and Watts

commonly constructed by using linear (1981), and Hamilton, Bates and Watts (1982).

regression methods, replacing the solution For a review of related literature, see Bates

locus with the tangent plane at the maximum and Watts (1980) and Ratkowsky (1983).

likelihood estimate. Such tangent plane Programs for calculating r and rare ie

regions are generally easier to construct than by Bates, Hamilton and Watts (1983).

corresponding likelihood regions. More The material In Bates and Watts (1980)

importantly, the elliptical contours of represents an important step forward, but

tangent plane regions are relatively easy to their method for assessing the adequacy of the

rcharacterize and understand, particularly for tangent plane approximation applies only to

pone- or two-dimensional parameter subsets tangent plane regions for the full parameter

r which are often of interest. Likelihood vector. This method is not appropriate for

regions, on the other hand, are not influenced assessing the adequacy of tangent plane

*by parameter-effects nonlinearity and, regions for a subset of parameters, as

therefore, generally have true coverage closer Indicated by Cook and Witmer (1984) and

to the nominal level than do tangent plane Linssen (1980). It is fairly easy to

regions. Under suitable regularity conditions construct examples where r' Is relatively

and with a sufficiently large sample size, large and yet there Is good agreement between

tangent plane and likelihood regions will be the tangent plane and likelihood regions for a

in good agreement, but In any particular subset of the parameters. One such example Is

problem the strength of this agreement IS given in Section 2 which is a brief review of

usually uncertain. the tangent plane approximation and the Bates#, .-

Bates and Watts (1980) propose measures of Watts methodology. We are often Interested in

Intrinsic and parameter-effects curvature for confidence regions for subsets, particularly

assessing the adequacy of the tangent plane for individual parameters. Thus, the

approximation: Relatively small values for Inability of the Bates-Watts methodology to
n

both the maximum intrinsic curvature r and assess the adequacy of subset regions reflects

the saximum parameter-effects Pnuvtuef an important gap in our understanding and

indicate that the tangent plane approximation ability to deal with nonlinear models.
is reasonable, while relatively large values

%[
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In Section 3 we develop measures for used in the following sections involve the pxp

assessing the agreement between tangent plane matrices W, , i-1....n, with elements

and likelihood regions for an arbitrary subset fr . a 2f /a , r,s-1 ... p. These
of parameters from a nonlinear regression matrices can be written conveniently in an

model. The measures require the same building nxpxp array W (Bates and Watts, 1980). The

blocks as needed for the construction of f , 
ab-th "column" of W is the ab-th second V

Tab
and reduce to r when the full parameter derivative vector Wab with elements f b

vector is considered. Computationally, these i-1,...,n, while the i-th face W of W is the

measures require little more effort than rT pxp matrix consisting of the I-th elements of

itself. Section 4 contains several examples the second derivative vectors Wab.

and our concluding comments are given in

Section 5. In the remainder of this section,

we establish notation and briefly review 2. CURVATURES AND THE TANGENT PLANE L

APPROXIMATION
relevant background information.

Let F(e) denote the nxl vector with
A nonlinear regression model can be

elements f (0). The standard elliptical
confidence region for 8 based on replacing

Y ) + , i-. n () F(6) with the tangent plane at e can be

written as

where yi is the i-th response, xi is a vector

of known variables, 0 is a pxl vector of

unknown parameters, the response function f is I V TvTv. S
2
G1 (3)

a known, scalar-valued function that is twice 2here 4where 4, - (4,a) - 0 B , a
2 

= RSS(8)/Cnp), '"

continuously differentiable in 8, and the G - pF (p, n-p)
errors c. are independent and Identically G'..'a-

1 and F (v ) is the upper a probability
distributed normal random variables with mean v1 ' v2 i

0 and variance o2• point of an F distribution with v, and v 2^degrees of freedom.111::""

The maximum likelihood (ML) estimator 0 ofT degr es s of fe dom.n

0 can be obtained by minimizing the residual

(3), we need the standard quadratic expansion
sum of squares o buof F about 8:9".

n
RSS(@) - I (yi " f(xi, e))2  (2)

F(e) F(e) + V Tw (4).2
Kennedy and Gentle (1980) discuss methods for

obtaining 8. For our purposes we assume that Multiplication involving threeldimensional

8 is available, arrays is defined as in Bates and Watts (1980)

For notational conv4nience, let so that ,Tw is an nxl. vector with elements

T
f l() - f(xt,e) and let V denote the nxp W wI, i-1,...,n. Generally, if F is

matrixr i-i,..•,n quadratic over a sufficiently largematrix with elements f .,,- *

r-1,..,p. neighborhood of 0 and the quadratic term of

Here and in what follows all derivatives are (4) is sufficiently small relative to the

evaluated at 9 unless explicitly indicated linear term, the tangent plane region (3)

otherwise, should be reasonable; otherwise, this

Various quadratic approximations to be approximation may be in doubt. Bates and

Watts (1980, 1981) implement this idea by

. . . . . . . .... .. . . . . .. --".::-:.:-



first decomposing each column of W into its both break down within the tangent plane

projections onto the column and null spaces of region. Thus, Ratkowsky (1983) proposes that

V W =V a V Wa + ab' c/2 be used as a cutoff level, beyond whichV: Wab P V Wab * (-V) ab ab Wab' '

where P is the orthogonal projection operator the tangent plane region is presumed

for the column space of V. With this inadequate.

decomposition, the quadratic expansion (4) TO demonstrate that the Bates-Watts

becomes methodology can fail for subsets of 9, we

consider the Fieller-Creasy problem in which

Fe) =F(2) + V2 * 1 Tt + 1 T a
n
O (5) the ratio of the means of two normal

populations is of interest. The corresponding

where W and W are the nxpxp arrays whose nonlinear model can be written as

columns are W
T 

and W respectively.ab ab-
Next, the adequacy of the tangent plane

region Is assessed by using the maximum f(xi, 8) =O 1X, + 102(1-x )  (8)

parameter-effects curvature
where xI is an indicator variable that takes -''

the values 1 and 0 for populations 1 and 2,
S a TwtII ) respectively. For convenience we assume equal

maxmax 4s (6)
llV112 sample sizes for the two populations -n 2-n/2

and, without loss of generality, we assume
and the maximum intrinsic curvature that 2 is known.

W T The model given in (8) Is intrinsically
= max ''J J _L-fps (7) linear so that r - 0. Further, Cook and

,IvII 2  -
Witmer (1984) show that

where the maximum is taken over all * in Rp .

These curvatures as well as the decomposition 2_ __, _211 (9)

of sTW, displayed in (5), reflect different ii 1 n

characteristics of the nonlinearity of the

model. The intrinsic curvature r is In this case the Bates-Watts (1980) guide for

invariant under reparameterizations and is judging the adequacy of the tangent plane

thus a measure of the intrinsic nonlinearity approximation is c - (x(e;2))f
1/2 

where x(a;v)

of the solution locus. In contrast, r is the upper a probability point of the chi-.

depends on the parameterization: different squared distribution with v degrees of

parameterizations can result in substantially freedom. However, it is clear that standard

different values of r T. If both r' and r" are methods can be used to form exact confidence

sufficiently small, the tangent plane region intervals for oi, the mean of the first

(3) should be adequate. population, regardless of the value of r'. In

More specifically, for a tangent plane other words, the tangent plane and likelihood

region of the form (3), Bates and Watts (1980) regions for 0 are identical for all '

suggest that the linear approximation should A similar phenomenon occurs in connection W_

be adequate if r
n 
and r' are both small with . Let r - a2X(a;1)/n ;2 . Assuming that

_____2'_ 1
compared to the guide c - 11VF (p, n-p). r<1, Cook and Witmer (1984) show that the 1-a

When r or r is greater than c, the linear likelihood region for 02 can be written as

approximation and the circular approximation

that is the basis of the curvature mcasures [2 ± + rr) (10)

2 2

%-



The level associated with this region is plane region to agree; otherwise these regions .P
exact. The corresponding tangent plane region will tend to be dissimilar. To determine when

is these regions are in substantial agreement, we P
investigate the behavior of h by using the

± (r + r02)
1
1

2  ( ) method described in Section 2, except that F , %-
is replaced by h which, in combination with

Clearly, (10) and (11) will be close only if r ¥ - (yi), contains essential information on

is sufficiently small. For any fixed value of e Thus, in exact analogy with the Bates- 12
r, however, f

r 
may be large or small depending Watts development, we will produce expressions

on the value of e so that again the Bates" for the curvature of the solution locus
2

Watts criterion fails to reflect accurately submanifold defined by h. Where necessary for

the agreement between the tangent plane and clarity we refer to this as "subset

likelihood regions for a parameter subset. We curvature". Similarly, "subset parameter-

will return to this example at the end of the effects", and "subset intrinsic" refer to the

decomposition of the subset curvature intonext section.

components in the submanifold tangent plane

and its orthogonal complement.

3. SUBSETS Let aT(0 2) ((2) - (gT( 82), 8T), let

Let L(,o 2) denote the log likelihood for aI denote the pxP2 matrix with elements

model (1), and partition aa Ia2j, i-1,2,...p. J-1,2,...P2' and let

T T T A denote the pxp xp array with i-th facee (01, e 2) where 6 is a p1 x I vector, 2 2.2-

1-1,2. The standard likelihood region for e2  A2i i-1,2. p; the elements of 821 are

can be written in the form (Cox and Hinkley, / , J,k-,. p2. We assume, of 

1974, p. 343). course, that g is a twice continuously

differentiable function of 62' With these

definitions the straightforward quadratic

je2:2[L(8 
2
) ) e2,

2(e2 ))]pI (12) approximation of h( 2 ) about 02 can be written

as
where p, a selected positive 'onstant, is used

to set the nominal level and (gT(6 2 ), a2(2)) h( 2) F(O) + VA 1 2  (14a)

represents the vector-valued function that . T T (l b) (1)2 1 WA 1 2 (14b-(14

maximizes e2112
2

0L(11 8 2 a ) for each value of e2. Evaluating 2 (Ic)

(12). the likelihood region for 62 can be 2222

written equivalently as where '2 - 02 e--

n
{e2:n.log[[ (yii(eB 2), e2))

2
/na

2I p) (13) 3.1 Refining Equation (i4).
I.I

For the quadratic expansion in (14) o be

useful, we need to develop explicit forms for

Clearly, the form of this region is governed A, and A2 to produce a reexpression of (14)

by the vectorivalued function h(e) = F(g(O), that displays the (subset) parameter-effects
2 2

S2). If h is essentially linear over a and intrinsic components of h at 2" To avoid

sufficiently large neighborhood of 13, the interruption, the details of this development

contours of (13) will be elliptical and we can have been relegated to the Appendix. Here we

expect (13) and the corresponding tangent discuss the final form.

...-.,,-.......-..,...----.v........ ,--... -, ....
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The final form of (14) is based on the In the following any quantity with a tilde

assumption that the intrinsic curvature of F added above indicates evaluation in the

at e is negligible. That assumption is coordinates. Thus, for example, m

somewhat restrictive but it is valid in the aT Partitionthe

important class of problems where the th face W of W as

parameters of interest are nonlinear functions

of the location parameters in a linear model. W iWil

In any event, we judge the practical 1  - (

advantages of allowing for substantial 121 2

intrinsic curvatures to be minimal since

experience has shown (See Bates and Watts wi i
Next, define W2 to be the nxP xP2 suaryo

1980, and Ratkowsky 1983) that they are Next ine W22 to be mhen l2  subarray2f

tyial ml.O ore n W with i'-th face W and similarly define W
typically small. Of course, r can and should 122 br 12

be evaluated in practice so that this to be the nxpI-xp2 subarray of W with itth face

assumption can be checked. W112 ' i,...,n. Finally, partition
asupto ca (VIVe achUecUIUkeheed. nd

In the remainder of this paper we use C(M) V - (V1
--

2) and U - (U1 ,U 2) where U andV

are n x pi matrices.
and C'(M) to indicate the column and null

With this structure, the quadratic
spaces, respectively, of the matrix N; the e

corresponding orthogonal projection operators ifaivl a, informatively as..

will be denoted by P and PM' respectively. %- oo

In their development of the intrinsic and h(e2. F(;) + U2 2  (19a)
222

parameter-effects curvatures for the full -..

parameter vector, Bates and Watts (1980) found + U ][W 22].2  (1b) (19)

it convenient and revealing to work inr U ]f(191210 (190

transformed coordinates. Similarly, the L 1 {2 U2 j[N1 2J 2

quadratic expansion (14) is most easily

understood in terms of these same transformed

coordinates: Let V = UR denote the unique QR- where the brackets [.][-] indicate column

factorization of V where R is upper triangular

and the columns of the nxp matrix U form an (sample space) multiplication as defined in

orthonormal basis for C(V). Next, partition R Bates and Watts (1980), and discussed briefly

as in the Appendix. Term (19a) describes the

plane tangent to h at 82. Since C(U2 ) - C(P

R R V2), this plane is simply the affine subspaceR 1 -
l 

12 "'"

R (15) F(e) + C(P V V2). This is the same as the

22 subspace obtained when using the tangent plane

approximation to form a confidence region for
where RIi is p x Pi' 1-1,2. Transformed

1 82  In other words, the confidence contour
coordinates * can now be defined as 2'

T T-" T TRT that based on the tangent plane approximation will
10 - (0 R so ta

1 2 coincid, with those based on substituting the

linear approximation of h into (13), as

R 110I+ R12 42 (16) expected.

and Term (19b) contains the projections of the

columns of W22 ont- the plane tangent to h at

R2 2 (17) 2 Thus, this term reflects the (subset)

parameter-effects curvature of h in the

%......



A. I. ,. A- -.

direction 02" The maximum parameter-effects Note that (23) contains the extra factor 2,
curvature~~e 

tr fa to fo2, ub e an n w b

curvature r for the subset 2 can now be corresponding to the absence of the factor 1/2

defined as in (19c).

This curvature can also be expressed in

S  maxdT[P 22]dII42S (20) terms of a subarray of 4. Let A12 denote the

2 P2xpIxp2 subarray of A that hasfaces Ai12' 
L' 6

i-p1+1 ....p. Then A12 - and

where the maximum is taken over all d in

D - {d:dcR 2 , Ildil = 1. Since ;2 is a ( - maxll[dT [A12]d12P 2s

linear transformation of 02 as described in
2P

(17), r(0 2 ) will be the same in both maxil [ d1Aj12dI124 2s (2k)

coordinate systems. 
JP 1 +1 

",J12

To further understand (20), partition the I

i-th face A of the pxpxp unsealed parameterP where d is the (Jpl)eth element of d.

effects curvature array A - [UT][W] as Interestingly, the intrinsic curvature for the

subset problem depends only on fanning and

torsion components of A; compansion and arcing
A' A 112

A -A )(21) play no role in the determination of r. The
A 1 2 A22 fanning and torsion terms of A depend in part

on how the columns of V are ordered. Since we

wheret imenp Nx i i p have assumed that the last P2 columns of V".. ~J-12, i-I .....p. Next, let A2 denote the 2 '-b

-,2 correspond to 0, it is the fanning and i '

p2xp2 xp 2 subarray of A with faces Ai122 ' corsodt 2'itsthfangad
-:p,+I,..... ThePP utorsion with respect to this ordering that are
1=Piip+I,..p. Then 

-

important.

If both rn and r are sufficiently small,[ [P IN I U2][A22 ]
5

221 2 the likelihood and tangent plane confidence

and regions for 02 will be similar; otherwise wedTA2(
d 2-2

(?) - x (22) can expect these regions to be dissimilar.
D

Following Bates and Watts (1980),

In this form it is clear that the maximum c - (Fe (p2 ,n-p))- can be used as a rough guide

parameter-effects curvature for the subset for Judging the size of these curvatures. As

problem depends only on the behavior of the 02 noted earlier, our experience indicates that

parameter-curves. The elements of A can be curvatures must be substantially less than c

used to understand the behavior of these to insure close agreement between tangent

parameter-curves in terms of arcing, plane and likelihood regions. This will be

"companston", fanning and torsion, as illustrated in sections 3.3 and 4.

described in Bates and Watts (1981). Finally, we combine the intrinsic and

Term (19c) is clearly in C(V1 ) and is thus parameter'effects components of (19) to define

orthogonal to the subspace tangent plane, the total curvature r (0 ) of h at 0 as

This term then reflects the intrinsic

curvature of h at so that the maximum r(o) maxll T ,A d.l 22 a~ 2 D 2
intrinsic curvature can be defined as -

T T +41dT[d)[A1 2  1 2

r(e 2 ) - maxltdT U [ 2]dll2rP2 S (23) "112'(25

..- ... .... ...2 2 1.. 
.
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As will be demonstrated in the next and consequently p is the only single
p

subsection, the total subset curvature r. may parameter for which curvatures can be

be more relevant than both rn and r
s. 

For constructed from a given parameterleffects
5 s

example, it is possible to have rn < c and array A. The A-array for other orderings can( hl >c nsc a

an m cwhinr>ctlyn situations be constructed by permuting the columns of V

and rn may incorrectly indicate that the and beginning again, of course.

tangent plane approximation is adequate, while Alternatively, a oomputationally more

r correctly Indicates otherwise, efficient method for obtaining the Aiarray in

When the full parameter 0 Is of Interest, a rotated coordinate system can be constructed

we have 2 0 B and P p. In this case, the as follows. Let =z ZO where Z is a selected
2 p2 -

subset intrinsic curvature (24) is zero, A22  pxp permutation matrix. In what follows, the

is the Bates-Watts parameter-effects array, subscript z added to any quantity indicate

and both (22) and (25) represent the maximum evaluation in the coordinates z . Clearly,

parametereffects curviture for B. Thus, our Vz - VZ
T 

- URZ 
T
. Let U*

T 
be an orthogonal _

derivation based on the likelihood reproduces T

the primary quantity developed by Bates and matrix such that = U RZ is upper

Watts (1980). triangular. Since the QR-factorization of Vz  r j%

is unique, it follows that V = U R where
The main conclusion of this suction is Uz z z

Uz - UU and z R U rsing this structure It
that the unsealed parameter-effects curvature is not difficult to verify that

array A for the full parameter contains all

necessary information for evaluating the

adequacy of tangent plane confidence regions Az - [U I[U AU 3 (27)

for certain subsets of B. For example, if the

last parameter p is of. interest then r (6p) Thus, to find A z , the parameter-effects

p 5 uvauep
Is simply sla I where a Is the (jk)-th curvature array for the rotated coordinates

element of the ifth face of A. Similarly, 0., we need only the pxp matrix U to
T

diagonalize RZ . A single call to LINPACH
P- .(1979) routine SCHEX produces R*, [UT ](A] and

(p 2s( ap) (26) the information necessary to construct U

Thus, compansion and fanning are the only 3.-A..-. 3.3 Fieller-Creas _Again -

effects that are relevant to an assessment of
To apply Pn and 1" in the Fieller-Creasy

the agreement between likelihood and tangent p
problem when 0 Iis the subset of Interest, we

plane confidence regions for a single
require only the 2x2x2 parameter"effects

parameter. curvature array A for

V - (x+B,(b-x), B1 (b-x))

% 3.2 Computation

Recall that the developments of this where x is the nxI vector with elements x, as

section are based on the assumption that the defined following (8) and b is an nxl vector

last P, columns of V correspond to the of one's. The faces A, of A are (Cook and

parameters of interest. This assumption is Witmer, 19810)

necessary to maintain the collective identity

of 92 as indicated in (17). This implies that

% the ordering of the columns of V is critical

.... .... . . . . . . . .. . . . . . . .
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r 1 in section 2, and the condition r < c insures

A 2 0 that the tangent plane interval (11) will in

Oinfl(1+)12; (28) fact be approximating a likelihood interval

and rather than some dissimilar region. This

A2 12 (29) condition also provides for an added measure

of agreement between these intervals since it

Reading directly from this array we have is equivalent to r < 1/4 rather than simply

r < 1.

r'(e) 1a Applying (22) and (24) when 01 is the

subset of interest gives rn (06) r (0 )0, as
si s1

23/2 1 expected. Notice that this conclusion cannot

n (i e2 )/ 2  
(30) be obtained by inspecting the A array given in

e2 (28) and (29). As mentioned previously,,;Z

and different subsets in general require different

r( 2 " 2fa2121 orderings for the columns of V and thus

different coordinates. This is the case here.

Finally, we consider the special case

23/20 1 characterized by (-1, 82) = (3,0) andv~iei l.1;2)1/2 (31) 2 s

2 r - .428. These conditions correspond to

2 rT -112
" .n - 2a . From (9), r-.33 < .41 - X

Recall that we are assuming a to be known in (.05;2). From Figure 1 (Cook and Witmer

this example so that the guide for assessing 1984), we see that the likelihood region,

the magnitudes of f• and s _(X(.;,)/ whose level is exact in this case, does not

From (30) we see that T (02) will be zero seem to be adequately approximated by the

only if ;2=0; in this case tangent plane region for small values of 0.

r n (6 )-23/2 -/nI; j < c or, equivalently, Further insight into this problem can be

gained by inspecting marginal regions for 01
P1

r = 2a2X(;1)/n^ < 1/4 is necessary for the and 0 2 Generally, marginal regions for

subset intrinsic curvature to be less than the subsets can be obtained by projecting all

guide. Further r < 1/4 is a sufficient - points in the joint region onto the

although not necessary - condition for both appropriate subspaces. The projections of the

Sn(e ) and rl(e ) to be less than c when 0 is regions in Figure 1 onto the 01 axis show that
s 2 s 2 2

arbitrary, the likelihood and tangent plane intervals for

Next, using (25) it follows that the total 81 will be identical, as expected. fhe

subset curvature is simply projections onto the 02 axis show that the [

resulting 98.6 percent likelihood interval

will be about 60 percent longer than ther ( E)  23/2 / f% 0in (32)

corresponding tangent plane intervall This

dissimilarity is clearly indicated oy . -and thus rs(62 < c if and only if r < 1/4. n. / ,
a 2 r ri(6 )=.67 > .41l 1/12(.10

When r > 1 the likelihood region for 02 will a 2
be either the complement of an interval or Our experience leads to the following

else the entire real liae; otherwise this heuristic characterization of the problem

region wilt be the interval given in (10). In described in the previous paragraph. Consider

this example, the total subset curvature a P2dimensional subset 0 with guide

recovers the critical quantity r as introduced c2-(F (P2 n-p)) 
2 

and partition

r
.

- "- -- ' .- -:.. ---------------------------------
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2 = (e21, 0  where e2i is p2 xl, 1i-1,2. curvatures are less than the guide while the

The guide corresponding to the confidence marginal likelihood regions do not seem to be

region for e2i obtained by projecting the well represented by the corresponding tangent

selected 1-m region for 82 is simply plane regions. This reenforces our previous

c 2 c(p/p , i-I,2. When the subset remark that curvatures must be substantially

curvatures for 21 are large relative to c2 1  less than c to insure close agreement. With ",,

and the subset curvatures for 0 are near this interpretation we see that all curvatures Ir
22

zero, it can happen that the curvatures for 82 successfully indicate the dissimilarity

are moderate. In such cases the curvatures between the various likelihood and tangent

for 02 can provide a misleading indication plane regions in Figure 2.

that the tangent plane and likelihood regions Figure 3 gives 88% likelihood and tangent

for 02 are in acceptable agreement. As hinted plane regions for (61,02) obtained by using

above, this problem might be overcome by model (33) and the 7 observations reported by

requiring that all subsets 021 of 02 have Michaelis and Menton (1913). For these data

curvatures less than the respective guides r = .079. This value and the subset

c 21. When 2 = 8 this added requirement seems curvatures reported in Table 1 are relatively
2* 2

to represent a useful fine tuning of the basic small, indicating reasonable agreement between

Bates-Watts methodology, the regions displayed in Figure 3. a

For our next example we use the I
4. ILLUSTRATIONS exponential model

In this section we present several fi 0 1(1-exp( 2xi)) (34)

numerical examples to illustrate selected

results of the previous sections. In combination with the 6 observations

For the first example we use the reported in Draper and Smith (1981, p. 522.,

Michaelis-Menton model
data set 3). In this case T = 1.92 clearly

i 1/( 2+x
)  

indicates the dissimilarity between the 88

percent regions for (G.1.02) shown in Figure 4.

in combination with the 12 observations However, the 95% marginal regions for 02 are

reported in Bates and Watts (1980). Figure 2 in close agreement, while the agreement

gives 87 percent tangent plane (broken between the marginal regions for 01 seems less

contour) and likelihood (solid contour) than adequate. These conclusions are clearly

confidence regions for (01,0 ). Here and in indicated by the subset curvatures
1'2

the following examples the levels of displayed rs( 2 ) = .069 and r (e1) .314 which may be

bivariate confidence regions are chosen so judged relative to the guide c - .360.

that the corresponding univariate marginal For the three'parameter asymptotic

regions have a nominal 95 percent coverage regression model

rate. It seems clear from Figure 2 that the f I 0, 02exp.o3x )  (35)

tangent plane region for (01,e 2) is not an

adequate approximation of the likelihood and the 27 obsprvations reported in Ratkowsky

region, although interpreting the Bates"Watts (1983, p 101, data set 1), we obtain r" - 1.53.

-. guide directly as the cutoff value would lead
The corresponding guide is

to the opposite conclusion, since

* .598 < c - .635. The subset curvatures o - [F 0 5 (3,2'4)f
1/ 2 

- .58 • This suggests that

for 91 and 0 are listed in Table 1; the
1 2

corresponding guide Is c .449. Again, the

. . . . . . . . . . . . . . . . . . . . .- . - . , . . . - , , . . • • . . - . • _ • .
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the 95 percent likelihood region for agreement between the tangent plane and

. (e1.0 2' 3) cannot be adequately likelihood regions for 8 3. as indicated by the

approximated by the corresponding tangent small curvature r (8 ) - .095. It can be

*plane region. The subset curvatures for argued justifiably, however, that this correct

selected subsets of e are listed in Table 1. indication from the curvature is largely

From these curvatures alone we would reach the frutu ic h uvtrsd o

.4following conclusions: 1) The likelihood and recognize the contribution of the smaller

tangent plane regions for e are in very close piece of the likelihood region for (0 2, a) to

*agreement. 2) The marginal regions for 0 1 the likelihood region for e Under this

* ~and 8 will be noticeably different, but the aruet3h ustcuvtr esr o
33

agreement is probably adequate for most has failed to Indicate the dissimilarity
purposes. 3) The usual 95 percent tangent between the tangent plane region for 83 and

plae egonsfo (.3) (2-83)sol the likelihood region (,1.0191,0) obtained by

be used for only very rough analyses, although using only the larger subregion that contains

lower level regions may be acceptable e. .

* replacements for the corresponding likelihood The reason that the curvatures give some -

* regions. These conclusions are supported by inappropriate Indications in this final

the 86 percent regions for (8 2.803) and (01.83) example is that both the linear and quadratic

shown in Figures 5 and 6, respectively, approximations to the model function fail.
For our final example we again use the This failure Is evident from a very low R 

2

* ~~~asymptotic regression model (35), this time infrmteegsinuedbGobrBas

combination with the 9 observations reported and Watts (1983) to obtain numerical

* byHun (170). Subet urvaure fo '~curvatures, and from related measures of "lack

parameter subsets are listed in Table 1. The of quadraticity" explored by the present

subset curvature for 8 is small, indicating authors. In cases where the quadratic

good agreement between the corresponding approximation to the model function is poor,

likelihood and tangent plane regions. The curvature measures based on that approximation 'a

* subset curvatures for the remaining subsets, may not be meaningful. .

a'particularly (8 2. 83 ), are large. Nevertheless, these subset curvature

The 87 percent likelihood and tangent measures represent an Important advance in our

- plane confidence regions for (8 2.83) r ie understanding of nonlinear models, and provide

*in Figure 7. The large total curvature, useful information about the adequacy of the

r (8 8 0 36.4, correctly indicates that use linear approximation when the quadratica 2' 3
of the tangent plane region as an approximation is appropriate. Further work Is

approximation of the disjoint likelihood needed on methods of identifying cases where

*region would be a disaster for this pair of the quadratic approximation may fail.

* parameters. In fairness, however, it should

be recalled that the approximations used to 5. CONCLUSIONS
*derive the subset curvatures are local so that

-r~1,o) i reponing rimril totheThe subset curvatures developed in this

disagreement between the tangent plane regionpae apartbeelbeinctosfth

and the portion of the likelihood region that adequacy of tangent.plane confidence regions

conain 0. Simlardoeent aplyfor most nonlinear models. In particular, the
conais . imlarcometsaplywhen only curvature for a single parameter Is a useful

82 iofitrs.tool for assessing the agreement between

From Figure 7, there is reasonable standard large sample confidence intervals and%

-J,-
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corresponding marginal likelihood regions, the possibility of such failure is of concern,

This ability to deal with subsets greatly the class of models adequately described by a

extends the usefulness of the Bates-Watts quadratic function is considerably larger than

methodology, the class for which the linear approximation

Because the original BateseWatts framework alone is adequate.

applies only to the complete parameter vector,

guidelines developed In that framework can be ACKNOWLEDGEMENTS

misleading when the adequacy of the linear Data computations for this work were

approximation is very different for different performed on the University of Wisconsin

subsets. To ensure good agreement between the Statistics Department's research computer.

*tangent plane and likelihood regions, the The authors thank Douglas Bates for access to

maximum curvature must be considerably smaller software and data libraries used for some

than the Bates-Watts guide. However, this examples presented, and for suggestions on

criterion can be too stringent for certain computational methods.

parameter subsets if the whole-'parameter

curvature r' is used. By contrast, the subset

*curvature describes the shape of the APPENDIX
% likelihood region In the parameter subspace of

interest. Thus, the subset curvature is more Derivation of Equation (19)

directly relevant to the tangent plane

adequacy question and, based on the examples To develop equation (19) from equation

* described above, Is evidently more accurate. (143), we first require explicit expressions

The practical usefulness of the methods for 1A and A
*described here depends, in part, on their easeanA

of implementation. The subset curvatures for A.1. AndA

any selected subset can be computed directly

from the Bates",Watts parameter-effects - J
curvature array. This array can be obtained Let Land Ldenote the pxp matrix and

either analytically (Bates and Watts, 1980) or pxpxp array of second and third partial

numerically by using the procedure given in derivatives of the log likelihood L with

*Goldberg, Bates and Watts (1983). respect to the elements of 8, respectively.

The usefulness of the subset curvatures Let g denote the a-th component of g as
* ~depends also on the restriction that the deie olwn 1)adpartition L as

*intrinsic curvature of F at e is small. This L1
restriction is not of great practical U L1  L12 \

Importance since it has been found to hold in \L I L22
*most cases. Nevertheless, a unified approach

which incorporates the Intrinsic curvaturewhr

component might offer further Insight in some isPx j12
situations.Since g maximizes L(e1, 2) for each fixed1J

value of 6 we clearly have
Another area for further research Is the2

*development of measures that Indicate when the
3L(g(O ).esubset curvatures themselves may be unreliable 2 *2

due to the failure the Pqcond~order ag-0 (A1

approximation to the model function. While2

% .. %



for a-1,2,...,p1 and all 82 . This identity from 1 to p1. Notice also that auc/
3
02r is

will be used as the basis for obtaining AI and simply the (c,r)-th element of A1. Expressing

A2. (A.4) in matrix notation and solving for A2

Differentiating both sides of (A.1) with gives %

respect to 9 and evaluatn at ;F ie

M(ll L 12) M - 0 1- T (A.5)
Since the submatrix consisting of the last p2 2 [A10[A

rows of. A is an identity matrix it follows

that Here and in what follows brackets r ]r 3 -. "

indicate column multiplication as defined in %

'L L 2) Bates and Watts (1980). (Generally, if A is

1 J(A.2) an axb matrix and B is a bxcxd array then the

elements of the i-th face C, i-i....a, of

Let ei - yI f (e). The the first term of the axcxd array C - [A][B] are AiB jk,

TJ12. , k-1,2...,d, where A is the ith

L'. ( eiWi W vTv),O
2  row of A and Bjk is the jk-th column of B.)

'dI As before we will take
represents intrinsic curvature of F at L. "VT V /0

Since this curvature is assumed to be To further evaluate A2, we require the
T 2 2

negligible, L - -V V/a and therefore pxpxp array'L." Straightforward algebra will

verify that

I.T .1 T 1
A 1- -(V V1 ) 1)\ -R R12) (A.3) n

/ \ 111 Labc 2

where V = (V1,V2 ) and RIj is defined in (15). ( abc a be b ac c ab

An expression for A2 can be obtained (e1  t - i -" .

similarly by taking second partial derivatives L

of (A.) with respect to 2r and 2s'
of A=,) with re st toyiel nd 

8
sUsing this representation it is easily

2*Ths.p
2
. Thi. .yields

verified that the a-th face L of L is
a

-"a2,, ...
L b L a 2 * K (A.6)

b-i ab 39 2 023A

where b is the a-th standard basis vector for

p Do a b  a T
L" c b ac
b abe e 38 (A.4) and K - b W is the nxp matrix with W as

b12r 2s the c-th column. Finally, it follows from

(A.6) that
where L.b, Labc and ab denote the indicated

elements of L, L and
( IgT(e) e), respectively, and zT' L 2 . 21 (A.)

2aa-,,1,.'p. The component ab /38 36 is
b 2r 2swhrZisaarirr xvetr Thsfm

the (r,s)-th element of the b-th face A of where Z is an arbitrary pxl vector. This form
2b

A2. Since A2b - 0 for b=p1+1 .... p the will be useful in later developments.

summation on the left of (A.4~) need only range

. . . . . . . . .



A.2 Tangent plane, Term (1ga) Using this in combination with (17) and (A.8)

It follows Immediately from (A.3) that to transform the coordinates in term (A.IOa)

gives term (1gb).

VA I= P; V 2 - 2 A8

V1 2 222 (A.8) A.4 Intrinsic Curvature, Term (19c)

In the expansion of h given in (14), we

where U2 is defined following (18). Thus, the still have the sum of terms (i4c) and (A.1Ob)

relevant tangent plane is the affine subspace to deal with. We first consider (14c).

F(;) + C(P V ). Transforming term (la) Using (A.5) and (A.7) with Z - V1.2 we

according to (16) and (17) immediately gives have

term (1ga). 2

V#T A I (0 T A TLA
2 2 2 1 1, 12)

A.3 Parameter-Effects, Term (19b) IM (,a 1VT][W)A1,2  (A.11)

From the form of A2 given by (A.3), It Is - M [OT ATvT][W]A1 *2

clear that term (14c) is in C(VI ) and is thus

orthogonal to the e -subspace tangent plane. wV(VTV)
2 where M4- (V (Va). The first term of

The parameter-effects component of (14) must i
(A.11) is exactly the negative of term (A.1Ob)

therefore come from term (14b).
so that in an obvious notation

The three-dimensional array W in (14b) can

be decomposed into the sum of three arrays * (A. Ob) -(14) +(A.0b) M[#ATV][W]81$2

with orthogonal columns, 2[,12) 1 T[", 2

T T T[MWA (A.12)ATT

[Pv-Pv1][W] (+ P1]1W] . [Pv][W] (A.9)
1 1 IFrom (18) and the definition of W, It can be

shown that

The first term in this decomposition contains sonht

the projections of the columns of W onto C(P
VI MWA -UW R

V 2 ) and thus it represents parameter-effects 1 1 12 22

curvature for the subset problem. The second

and third terms are Intrinsic components for h Finally, using this relationship, (A.8) and
and , repecivel. Snce he ntrisic(17) to transform the coordinates in (A.12) we

and F .respectively. Since the intrinsic o t i e m( 9 )

curvature of F at e Is assumed to be

negligible, the third term of (A.9) is set to

zero. Addend (1lb) can now be reexpressed as

4T AT WA
2 2 1 1

T T , * V ][W^IA1 42 (A.1Oa)
(A.1O)

2 T AT(PvI (A.1Ob)

From (18) and (A.3) it follows that

W - T T "1 
.-'

22 22 1 1 22

l.%



TABLE i

Subset Curvatures

Model/Data Parameter Subset rt rn ra 3 8

(33) .330 .183 .377

Bates & Watts 02  .393 .089 .403

(33) $1 .01 .025 .029

Miehaelis & Menton 02  .050 .019 .053

(31) 61 .277 .18 .314

Draper A Smith 02 .053 .008 .069

0I  .165 .180 .241
.003 .059 .059

Ratkowsky 03 .153 .132 .203

(01.3) 1.07 .088 1.07

(02.03) .518 .000 .518

e1  1.75 .190 1.76

(35) 02 1.80 .256 1.82

Hunt e .018 .098 .095

(02,03) 36.0 .000 36.8

%-,

|t.see %.'

-9.7S@

-I .Ses

Oeee. - .s.

-. - IS ".-- I.-'- 3.

Figure 1. 95% confidence regions for (e1,82) from the Fieller-Creasy
model (8); ( .) (3.0). Likelihood region - .

Tangent plane region

%
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Figure 2. Nominal 871 bivariate confidence regions with 95% Figure 3. Nominal 881 bivariate regions with 95% marginal

marginal regions for (e,8) from model (33) and the regions for (e,e2) from model (33) and the %F
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Figure 4. Nominal 881 bivariate regions with 951 marginal regions
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Knwledge Auqulsidon In REX and Student

William A. Gale

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

REX (Regression EXpert) demonstrated the feasibility of building data
analysis consultation programs using expert system techniques. However,
experience with REX development showed the need for automated
assistance in building, maintaining, and extending knowledge bases for other.
specific data analytic tasks. Symptoms of this need were difficulty
maintaining consistency across examples, need for the statistician to learn an
obscure language, and difficulty of specialization.

Programming by examples is a natural approach in the statistics domain,
because working examples is necessary in any case. Such an approach
would address the problems noted in the development of REX. Three
fundamental steps in the development of a practical programmed-by-example
system are the acquisition of the first example, acquisition of an additional
consistent example, and the integration of an inconsistent example.

By restricting the domain within which knowledge can be acquired to data
analysis, it has been possible to design practical solutions to these three
steps. The first phase of Student, a system designed to learn data analysis
strategies from examples, has been implemented. It acquires the first
example in any data analysis area, and incorporates many features required

for handling problems of additional consistent and inconsistent knowledge.

1. Bckgrundoperates on a data set or example. A general
REX is a consultation program in an area of goal of the analysis is to meaningfully
statistics, regression analysis, built using expert summarize the salient features of the data set.
system techniques. Its performance was The standard form of summary is a statistical
described in [Pregibon and Gale, 19841. It had model, typically with parameters estimated from
an active life as a demonstration system, the data set. By using plots and numerical tests,
running about weekly for a year. It the statistician detects incompatibilities between
demonstrated the feasibility of using expert the model and the data set, which are

*system techniques to build a consultant in data ameliorated by some action, such as
*analysis. However, as detailed in the next transforming a variable, changing the model, or

section, the knowledge acquisition process for changing the method of estimating parameters. I
REX efta lt tobe esied.In mimicking this process, REX checks for

Regression analysis is one technique of a problems using tests, and recommends actions to
broader category of data analysis techniques. the client after verifying that a proiposed action
Other techniques include spectrum analysis, will solve the problem found. It offers to showIanalysis of variance, and cluster analysis, for the client plots whenever it detects a problem or
example. A statistician doing data analysis recommends an action.



In building REX, the statistical knowledge it from data analysis examples -- relatively few
contains has come to be called a "strategy" for examples are needed to exhibit the required
regression analysis. The term seems appropriate distinctions.
as the nature of the knowledge includes However, the way in which we worked

what problems to look for, examples for REX was far from ideal. The first
when to look for them, difficulty with our method was assuring

6how to look for them, ourselves that a strategy modified to work one
how to decide if they are real, and additional example still worked all previous
what to do if they are. examples. We could by brute force run REX in

batch mode on all previous examples and see if --

*There is very little statistical literature relevant the performance was the same. Usually we
*to strategy, and indeed, REX, as an reasoned that most of the previous examples

environment for developing and testing strategy could not be affected, and checked the few that
has opened up a new area of research, might be affected by hand. Naturally, the more

examples worked, the more severe this problem
2. A Critique of Knowledge Acquisition In REX became. The necessity to check consistency in
Developing a strategy for use in REX was a batch mode for a system designed to be
labor-intensive process. Two phases can be interactive reduced the flexibility of the strategy

*distinguished. In the first phase the statistician developed.
responsible for the strategy, Daryl Pregibon, Secondly, the method used was the epitome of
chose a half dozen regression examples that the currently standard two-person development
clearly showed some common problems. He of expert systems. I wrote the inference engine

*then analyzed them using interactive statistical used while Daryl was responsible for the
software with an automatic trace. After strategy developed. Whenever Daryl wanted to
analyzing the group of examples, he studied the do something he hadn't done before, we had to
traces and abstracted a description of what he huddle, as Daryl was learning a language he
was doing. We coded this as a strategy for would only use to construct one program. In a
REX and tried it on a few more examples. He department with twenty professional statisticians

%revised the strategy completely at this point, and and one person intimately familiar with the
%the second phase began. inference engine, it was not clear how many .

additional data analysis techniques could be
*In the second and longer phase, one of us handled by this two person approach.

selected one additional regression example and Thirdly, it would be difficult to modify thehran REX interactively on the chosen example. strategy in REX. Modifiability is important first
*Typically the strategy would not handle the because a growing literature on strategy can be

example (since the example was selected expected to suggest desirable changes. it is -

*knowing what would stretch REX), and we important secondly because strategies need to be
modified the strategy so that the example would specialized to the needs of a particular group.
be handled. This process was iterated through Statistics is a discipline that is applied in other,
about three dozen more examples. "ground", domains. Current knowledgeF

* ~~~~Based on this experience, and on a feeling that rpeetto n agae gnrto
it was typical of other techniques, we do not techniques are not adequate to producing a tool
believe it is possible to construct a data analysis that will speak physics with physicists and

straegy witout workng hrogh any psychology with psychologists. An alternative
examples. The range of the decisions needed to to one broad tool is a tool that is readily
construct a strategy is extreme, and there is no specialized. However, the first two problems
literature simplifying the task. Therefore the wudmk hsdfiut oseilz h
only available defense of a strategy is to program a local statistician would have to learn
demonstrate performance, which requires alnug sdb oohrpormi h

* working many examples more than those used world, and the modifications made might -
to construct the system. Our experience also inadvertently destroy some capabilities of the
leads us to believe that it is easy to generalize strategy.
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One valuable insight gained from building REX specialize the system by working examples
is an abstract view of its strategy that we believe typical of local practice. The value ofp ~ ~can be transferred t ote daaalyiseclzaon -was discussed in the previous
techniques. A practical data analysis consists of setion.--
an attempt to use a simple technique that is well Afwssespeiul eeoe oet ,.-

undestod (b sttistcias!).Howveritsusemind in considering construction of an expert
is subject to a number of assumptions which
may or not hold in a particular data set. When system by working examples. Teiresias [Davis,I a asumpionis iolte, ethe th daa mst19791 is the chief example of a program

r. ~~~be modified to fit the simple technique, or adeindfrntacvernsrofxptseomoreadvncedtecniqu mut beuse. ~an expert system. The mode of using Teiresiasmoreadvacedtechiqu mus beused Inwas to be that of selecting of an example,
other words, it has been possible to view dataletnthsyemrnuiltmaea itk,
analysis as a diagnosis problem (although not all eliciting the key piece of knowledge to avoid the
statisticians agree!) This view is "meta- mistake, and adding the new knowledge. The
knowledge" about data analysis which has been system therefore operates by acquiring an
built into Student, as described below, additional piece of knowledge presumed

consistent with that previously acquired. In
3. Requirements for Learning Dy Example addition to adding consistent knowledge,
The necessity of working examples to construct however, there are two other major problems
a data analysis strategy suggests examining the that need to be solved for a practical learning by
possibility of acquiring strategies directly example system.

*through some process of working examples. First, the system must support the acquisition of

* Th prviou dicusion uggsts hatIhea first example or rule. In a production system,
process would need to assist the user in the first rules acquired are typically different
establishing consistency across all examples from later rules, because the system uses a core
workcd, and should not require the statistician of rules to encode control information. A
to learn an obscure language. subject matter expert will not be able to provide
I am suggesting that progress in knowledge control information.
acquisition is possible through restriction of the Scntesse utspotdlbrt

* domain of knowledge to acquire. An issue for
* ~~~this approach is whether the restricted domain cag otekoldebs vrtm.Wneed to u ctly determine the consistency of

is broad enough to be worth the difficulty of new ex"- with previous examples, not just
constructing a special tool. For data analysis, I assume i,. We do not want to take a

*believe the answer is yes. A human statistician "debugging" attitude, but one of showing what
is typically expert in one or a few types of data is right the first time.
analysis, while a dozen data analysis techniques
would cover the bulk of data sets analyzed On the other hand, there are some systems that
[Snee, 1980). One might ultimately distinguish a support programming by example, although
few dozen data analysis techniques. Therefore, none of them are for construction of expert
many statisticians will be needed to construct a systems. Tinker [ Lieberman, 19831, PHD
reasonably comprehensive data analysis expert (Attardi and Simi, 19831, SBA (Zloof and De
system. Jong, 1977), and a system by Bierman and

A prgra by xamle yste isentiingforKrishnaswamy 119761* are examples. Attardi
* A rogam y eampe sytemis ntiingforand Simi review several of these systems, which

other reasons. First, it would be useful for the are designed for off ice automation
study of statistical strategies to collect multiple programming. Tinker appears to be the closest
strategies for the same type of data analysis. to our ideas for Student.
Combination of knowledge from multiple
experts is an open problem in expert system In using Tinker, the programmer selects a
construction. I view collection of a body of concrete typical example of data for the

* strategies from multiple experts as a necessary procedure. He then performs the procedure ..-

precursor to serious study of this problem. step by step. The system is therefore able to
Second, a statistician at a specific location could learn how to do the first example. As more

examples are supplied, the program required for

-~~~~. .... .... . .. .. .. .. . . . . . . .



them is compared with the already constructed is, inferred from building REX, is built into
*program. If the two differ, the user is queried Student. This meta-knowledge is represented as

for a predicate that will distinguish the two a network of eleven types of frames, as shown
cases. Therefore, the user ultimately provides in the following table.
one example for each branch of the final

*program. input variables
data types

Tinker seems to assume that the user knows assumption testing
how each example should be worked; there is no plot
means to change the program by deleting an generic plot
example already worked. The way a particular test
da~a analysis should be done is not cut ind generic test
dried, and indeed, the statistician is typically action
learning about a particular example while doing question discriminator
the analysis. I have built into Student some predicate discriminator
means of modeling what the statistician has words
learned, or may have learned, to capitalize on
this opportunity for knowledge acquisition. I do Each type of frame has its own set of slots,

not yet know how effective this will be. which represent the things that must be known
in Order to carry out a consultation. When a

On the other hand, Tinker is tackling a harder slot has not been filled, the system knows that it
problem in that it hopes to support Lisp doesn't know that information. It can then do
programming of any procedure. Lieberman something to acquire the information, which is
demonstrates its level of success in this by usually just to ask the statistician.
creating a simple editor. It is an encouraging Suetmngstomjrdt tutrs
demonstration. Tinker's use of menus, Otnth straes ojust been dscussd.Te

pointing, and question answering are suggestive Onthe istatsecond nesjutr ofe framuses. That

technques.represents a trace of the analysis of the current

* .4. Preliminary Experience with Student example. It is built of three types of frames:
entry points, decisions, and actions. The trace

Student is a system designed to allow a can branch at each decision point, if the user
statistician working alone to build an expert gives more than one response (at different
consultation system in a data analysis area. A times) to a question posed b- Student. A
first phase has been implemented. The first decision frame records all the 'responses to a
phase is designed to acquire the first example in given question, and book keeping information to
any data analysis area. uniquely express the set of answers effective at

Student can be operated in two modes -- a given point in the trace. The action frames

consultation mode and learning mode. In represent each side effect action taken by the

con3ultation mode, it will work functionally in a porm h nr onsaecetdec
manner similar to REX, suggesting acceptable time an assumption testing frame is begun in the[
ways to analyze a given data set. Since it is strategy. They allow the user to return to the

general to the extent of data analysis, it would same exact context in which the frame was
handle a much wider range of problems than begun at any time. The u-.r can then reach any

REX oes givn te reuiste sratgic decision previously made by stepping through

information, decisions to be left standing.

Student is able to acquire the first example These two data structures support phase I and

because it is limited to data analysis, and is not have been designed with an eye towards work

a general purpose tool for learning arbitrary on phase 2 (acquiring an additional consistent
things by example. In Particular, the meta- example) and phase 3 (acquiring an inconsistent

knowledge about what a practical data analysis eape.Termiigprgah nti



seton dscs how consistency and between two strategies. Each node represents a

icnitnyaeexpected to behnld taeywihcnb eie yitgaigthe

The analyses demonstrated by the statistician odrdsto rcsfo h ott h oe
are assumed to be acceptable analyses of the ~
examples (as judged by a statistician). A major S umr
focus of design in Student has been to assure REX is a working demonstration of the
that as- a data analysis strategy evolves, all feasibility of expert systems for data analysis. It
previous analyses remain acceptable analyses (as has several strengths: a convenient user I

judged by Student's strategy). This is the basic interface, ability to solve standard textbook
test of consistency. Points at which consistency regression problems, and a modest ability to

*is not obvious have been found to fall in four explain the reasons for its suggestions.
categories: provably consistent, mechanically However, it also has limitations, mainly in
consistent, mechanically checkable, and supporting strategy acquisition, modification, I
provably inconsistent. A provably consistent and specialization.

* change results when pre-seiiable data is Student has been designed to build upon REX's
sufficient to prove consistency. A mechanicallystegh wheovrmig tsliain.
consistent change results when information Student will allow statisticians to construct or
needs to be gathered by reexamining previous etn nweg ae oslainssesb
examples, but the resiult must be a consistent wornkinoeales baned aonswerain qustios.

straegy. A mchancall chckabe chngeThis will provide easier and faster construction i
requires reexamination of prior examples in of better consultation systems in data analysis.
order to show consistency, and the review may
establish inconsistency. A provably inconsistent The proposition that Student explores is that by
change results when pre-se tfable data is restricting the domain within which knowledge
sufficient to prove inconsistency. can be acquired, significant assistance in

Treatment of inconsistent changes rests on how knowledge acquisition is possible. The control
*the trace of the latest example is related to the information needed to structure the first

accuulaed traegy Eac exmpl wokedexample can be provided. The information
produces a trace with all the information ncsayt rv hte hne o
gathered from the statistician. Each trace knowledge is consistent can be specified and

rersnsan example worked in the context of collected. Support for changing inconsistently

the strategy accumulated to that point, and the wt oepeiu xmlscnb rvdd
strategy changes called for by the trace are!.

*guaranteed to be consistent with that6.Rfrne
accumulated strategy. Therefore, an ordered set
of traces is a kind of "source code" from which /Attardi, G. and Simi, M. (1983). "Extending h

*it is possible to "compile" an integrated strategy the Power of Programming by
consistent with all the examples represented in Examples." Appearing on pp. 3-26
the traces. in 'Integrated Interactive Computing

A provably inconsistent change will conflict with Sses d eaoadSneal
parts of the the traces of some prior examples. NosrdHlandPbihngCmay
Those parts will have to be reworked manually,.mtedm
and it is a service to isolate them for attention.BiranAW.ndKshaw yR(96)

Thereminig art ofthetrcescanbe"Constructing Programs from
retained, assuming that the actions based on the Example Computations." IEEE
(incorrectly derived) data, although incorrect for Tascin nSfwr niern
the example, were correct for the data. TheSE23,4-1.
result will be a tree of partial strategies, each
branch representing an inconsistent difference

4
_______ ____ .- *._-,_*p_..-. q__*
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MANAGING DATA ANALYSIS THROUGH SAVE-STATES

Paula J. Cowley and Mark A. Whiting

Pacific Northwest Laboratory
Richland, WA 99352

Data analysis management is a methodology intended to increase the
productivity of the data analyst. A primary entity for data analysis
management is the "save-state', a collection of metadata and data that
captures a state of the analysis. The analyst may create a save-state
to designate a milestone of the analysis. The save-state may be used
later to return to that milestone by restoring the conditions of the 0
analysis that existed at the time the save-state was created. Scientist
at Pacific Northwest Laboratory (PNlL) have developed a prototype data
analysis management system. In that system, a save-state includes
pointers to the data sets and command procedures active at the time the
save-state was created, active plot descriptions snd other graphics
parameters, and comments supplied by the analyst. Associated with each

* save-state is a record of the sequence of commandz or operations used to
accomplish the transition from the previous (parent) save-state.
Metadata also describes the overall relationships between the save-
states that have been created during the analysis.

NATURE OF THE DATA ANALYSIS PROCESS fact is often not apparent when the
For he pst everl yers tea offinal results of the analysis are
For he astsevral ear, atea ofpresented, since only the successfulcomputer scientists and statisticians results are presented. However, it is

working on the Analysis of Large Data useful to keep track of these dead ends.
Sets Project (ALDS) at the Pacific They can be useful in showing that the I'%
Northwest Laboratory (PNlL) has been analysis was rigorous and complete and
investigating the nature of the datathtraoblatenivswe
analysis process (1,2,3,41. There were invtesad. trntiewr
several motivations for this work. We inetged
wanted to understand the analysis The analyst may have several
process better. We wanted to provide alternatives to explore at various
better tools. We hoped we could learn pit nteaayi. Sneol n
more about how av expert data analyst alternative can be dealt with at a time,
worked in order to help less experienced it is useful to be able to return to

analysts.previous points in the analyses in order

When we examined the data analysistoryathrlenti.4
process, we were able to identify The process is characterized by fits and
several properties of it. The process starts, dead ends, and decision points

tend tobe ieraivewithsimlarwith many options to explore. Although
operations applied repeatedly for we can think of the process as
different data sets and subsets. The proceeding linearly through time from
process tended to be exploratory. The beginning to end, the process really has
analyst has some basic ideas of how to more structure to it than that. Rather
approach the analysis at the onset, but than representing the process as a
the direction the analysis takes often straight line, the process is better
results from the knowledge gained from characterized as a tree where the nodes
previous points in the analysis, of the tree represent significant points
Because of this, data analysis is best in the analysis, which we call "save- t7
pursued interactively. It is very states," and the lines between the nodes
difficult to write the complete script represent the steps in the analysis that
for the analysis betore it begins, took place to create the child node from

The nalsis rocss cn rsultin any the parent node. Figure 1 shows howThe nalsis rocss cn rsultin any such a tree can be depicted graphically.dead ends. Because of its exploratory From any point in the analysis
nature, the analyst may try several designated as a save-state, the analyst
approaches that simply don't work. This can proceed vitil a significant point in

%9
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Main Menu Daasuch as AT&T Bell Laboratories' S System
Gathering and [5) have been designed to be extensible

State Operations Verification so that the analyst can add new
Log peraionsfunctions as they are identified and can

Move Window run functions available in languages
H~elFtNd roie yj

Help; at 0 such as FORTRAN within the environment

At PNL, we have always attempted to
atrA Pat~l. uildsystems which can utilize existing

Dead End Second Node data analysis packages. The work we
have done in data analysis management
was built using S as a base.

ThirdNode ata MannagaMnt. Most systems for data
Third Nodeanalysis have facilities for data%

management that allow the analyst to
*~h organize, store, and retrieve data. All

fourthNo'deprovide capabilities for data to be
brought into the system for analysis and
for data and results to be displayed and
printed as output. Some systems have%

FIGUR1JJ. The Data Analysis Management better facilities for organizing data
Display than others. Some support more

complicated data structures than others.
Some allow the analyst to provide
meaningful names rather than simply

the analysis is reached. This point can assigning column numbers to data
be defined as a new node of the tree, variables and leaving it to the analyst
The analysis can proceed on from that to keep track of which column contains
point or the analyst can return to a which variable.%

* previous node in the analysis and begin
another path. By allowing the analyst It is often useful to store data that is
to go back to previous nodes and derived during the course of the
proceeding from that point, a tree can analysis. Some of this derived data may
be created. This graphical consist of intermediate results that can
representation also depicts where the be useful in later phases of the
analyst is currently working. The star analysis. The process of storing and
at the end of a line segment indicates recalling derived dat-a should be easy to
that the analyst is currently proceeding perform.
down the path indicated by the line

*segment and the analyst may create a new Both raw data and derived data need
*node at any time. The new node will metadata to describe characteristics of

replace the star in the graph. the data itself, such as the data's
source, its units, how it was calculated
(if derived), what missing value code(s)

NCOMMON TOOLS FOR DATA ANALYSIS are used, why it was generated, and what
its role is in the analysis. It is

*There are a number of tools available as important to be able to associate the
aids in performing computer-based data metadata with the data and make it
analysis. Although these tools have easily accessible in a meaningful way to
improved steadily over the past several the analyst.
years, there is very little to help the
analyst manage the process. The It is important to provide the analyst
sections below discuss the desirable with a way of keeping track of the data
characteristics of data analysis tools sets. Some of this can be provided
and, with the exception of the section through the metadata and through good
on statistical functions, the areas in naming conventions, but current packages

*which they lack capabilities for helping provide no facilities for associating
the analyst manage data analysis. data sets with particular stages of the

analysis. The analyst has no automatic
Statistica~l fjUnjtijamr. Most statistical way of knowing when the data set was

*analysis packages are built around a analyzed or where it is used in later
*library of statistical functions that stages of the analysis.

can be applied to data sets. However,
no package can anticipate (or afford to It is useful if the analyst can record
develop and maintain) all functions the the context in which a data set was
analyst may want to apply. Some systems created. Orly the analyst can provide

. . . . . . . . . . . . . . ... .-... . . .



this context by describing such things transpired, the data analysis process is
as why the operations that created the not strictly linear in time. As
data set were performed, how the mentioned earlier, the process can be 0
operations were useful, the relevance of depicted as a tree. One of the
the operations, why the data is being adatgsoMuha rpiaeito
preserved, and what insights were of the course of the analysis is that N
gained. It is not only useful to segments of the logs can be associated
associate this context with the data with particular nodes in the tree. The
itself but also with the portion of the log segment that is associated with each
analysis process in which the data set node is the set of commands that caused
was created or used, the node to be created from its parent.

This technique gives structure to the
We see a need to provide the analyst log.
with tools for recording this type of
information. The most common mode is PnroiiPA1a Capabilities. As mentioned
for the analyst to type in the before, the data analysis process is
information through a keyboard -- iterative. The same operations are
perhaps using an available text editor. often applied to several data sets or
Another way to capture this information subsets. Analysts routinely create
is by using an audio tape recorder. The macros (or procedures) consisting of
analyst can dictate insights and sets of commands that are saved and
comments and store them so they can be stored as entities. These procedures
played back later. Our tape recorder is are often parameterized so they can
computer-controlled so the recorder can operate as needed against various data
automatically advance to the segment of sets. Analysts often build macros from
tape containing the comments relevant to the log. The log is edited to remove
a particular save-state. The system errors and superfluous commands and then
should be designed so the analyst can tested. It is refined and debugged.
use the mode of annotation with which When the analyst is satisfied, the macro

*he/she is most comfortable, can be stored for later use.

Grpis Graphics is recognized as an In S, macros are stored in structures
essential tool for data analysis. It is similar to those used for data. The
currently used during all phases of data analyst can differentiate between macros
analysis including data checking and and data because the names of macro data
validation, data exploration, and data structures are prefixed with "mac.0
confirmation and presentation. However, Just as data sets should be associated
it is often difficult to regenerate a with portions of the analysis, it is
given graph. In order to do so, the useful to associate macros with portions
data sets must be available exactly as of the analysis in order to identify

*they were before and the conditions where they were created and where they
under which the graphics were generated were applied.
must be the same. Sometimes it is 1
difficult to even recall when during the
course of the analysis the graph was THE SAVE-STATE

* produced.
We have developed a new methodology to

Logs.. Many statistical analysis aid the analyst in managing the data
packages will record the course of the analysis process. The primary entity
analysis in a log (also called a diary for managing data analysis is the "save-
or journal). The analyst can turn the state," a collection of metadata and
log on and off as desired. when the log data that captures significant
is turned on, all the commands entered information about the state of the
by the user at a terminal are also analysis at a certain point in the
written to a file. The log can provide analysis process. The analyst may

*a history of the course of the analysis, create a save-state at any time during
including all useful commands, non- the analysis. Save-state may be created
useful commands, and mistakes. The for any number of reasons:
analyst can also insert comments into
the log as additional documentation. -The analyst may wish to designate a
Some systems permit the analyst to have milestone in the analysis because a
results (output) added to the log, significant insight was gained at

that point in the analysis.
Even with comments inserted by the

.4.analyst, logs can often be -A decision point was reached in the
unintelligible without detailed, time- analysis and several different?
consuming study. While they record the alternatives can be explored from 1

aactions in the order in which they this point in the analysis.



- A dead end was reached that is ADAM
worthy of being preserved for In order to provide easy access to the
documentation purposes, tree of data analysis save-states and

-A more significant alternative take advantage of its natural structure,
ned-ob xpoe u h our prototype data analysis management

portion of work is incomplete and system, ADAM, is graphics based. The
the analyst must return to it prototype has been implemented on a
later. Digital Equipment Corporation VAX

11/789. The high resolution graphics
display device is a Ramtek 9400. The

Once a save-state exists, the analyst audio cassette deck used for recording
can re~ore tha sae-sate n oder and playing dictation is a Yamaha K-700
can re~ore tha sae-sate n odercassette deck. As mentioned earlier, we

to resume analysis from the point at are using AT&T Bell Laboratories' S
* ~~which the save-state was created. Thestitca anlis yte. Ss

effect is as if the analyst had movedrungude Enie aUIX eivte
* bak intim to he ointat hichthethat allows VMS to be run as the base
save-state was created, operating system while still providing

Information associated with the save- UNIX functionality.
state includes the name of the save-%
state, the data and time the save-state The tree of save-states is always

* ~~was created and last accessed, the name peeto h ihrslto oothesae-graphics device whenever the analyst is
of th anayst wo cratedperforming data analysis managementr

*state, the states of various iconsfucin (seFgr1) Thsste
(described below) that are part of the functdeionce Figur .Tis usdt is the
save-state, a list of the data sets and sraedice thinata s nsedtosisplaye
macros associated with the save-state, a graphis dingawt AAyis theg
list of plots associated with the save- anls itecswthAMtrog a
state, written comments entered at the series of menus. Priority windows [6]
keyboard, and information that points to aeue. Bt h eu n h

winoows are based on the principle of
verbal comments saved on cassette tape, successive disclosure. The analyst
This information is sufficient to give controls the level of detail displayed
the analyst a quick overview of what the at ny im. Te nlstcn eet
save-state contains and why it was mr rls ealdmnso rpia
created, The analyst can *scan" the diore y or less dealedstmes ord lgrpia
save-state to view this type ofdipaso th svettsan lg
information without having to restore segments as desired.
the save-state and incurring the
overhead of moving data sets around. We have defined three classes of

functions that can be performed using
Besies sorig th sae-sttesthe menus. There are (1) functions that

themselves, information is stored that are performed on save-states, (2)
allows the relationships between the functions that are performed on segments
various save-states to be graphically of the log, and (3) utility functions.
* deicte. I ordr todo histheThe utility functions include RETURN,
system stores an internal name for the which allows the analyst to move to a
* sae-sate it tile; se ofindces higher level menu; HELP, which provides
that depict the parent, child, and help on the menu currently displayedl
sibling relations between the save- MOVE WINDOW, which allows the various

statsg flg tat idicteswheherwinaows on the screen to be moved from
the save-state has actually been deleted place to placel and S-MODE which allows
and only a place marker is preserved; the analyst to exit the data analysis

and flg tat ndicteswheherthemanagement mode and return to the S
ave-at isa the idcrretl aetieh statistical analysis package to perform
state, the last scanned state, or is an further analysis.
incomplete state waiting to be created. Tefntosta a epromdo

Also associated with each save-state is save-states include SCAN, RESTORE,
the segment of the log that contains the MODIFY, SHOW NETWORK, ERASE NETWORK,
set of commands that describe the CREATE, and DELETE. Each of these

*transition between the state and its functions is discussed in more detail
parent state. blw

The SCAN function provides the analyst
with an overview of the save-state being
scanned. Information from the save-
state is displayed in a window that

- a
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* State Menu Create Menu Data

Scan Modify Title Gathering and
Restore Modify Author Verification
Modify Toggle Icons
Show Network Title Path A; First Noe Comments PahA ahB
Erase Network Path A. Author John 0. Analyst Datasets
Create First Node Created, 10/12/84 11:54 Move Window First e First Node
Delete Last Accessed: 10/12/84 12:00 Help

9.Move Winrdow Store/Return
Help Quit/Return B
Return Dead End Comments: Ouit/Return Dead End Second Noe
S-Mode 3 Verbal Comments Exist

Oatasets and Macros: Path BR

x ybar states ?
mac.f,.ples, t...

,Pt B; A New )-I Pah IFourth Node ISave-State

£J.ItRR 2. Scanning a Save-State FIGURE 3. Creating a New Save-State

overlays the graph of the save-states, to directly modify the save-state. The
The SCAN display is shown in Figure 2. analyst can modify the author or title
On the color graphics device, the save- of the save-state, turn the icons on and
state being scanned is shown in a color off, modify documentation associated
different from the color used for the with the save-state, and modify the list .e.
other save-states. In the figure, the of data sets and macros associated with
save-state being scanned is shown with a the save-state (although this does not
thickened line. The icons indicate change their contents). _...
special characteristics of the save-
state. The light bulb icon indicates Although the data analysis process is
that special insight was gained at this most often depicted as a tree, we
point in the analysis. The ear icon recognize that the process is not
indicates that the analyst has dictated strictly a tree. It is really better
some ideas on cassette tape which can be characterized as a network. The process
played on a computer-controlled audio becomes a network whenever the analyst
cassette deck. The eye icon indicates includes a data set in a save-state that .IAL
that some graphics are associated with the save-state did not inherit from its
this save-state and can be recreated if parent (e. g., a data set is imported
desired. The keyboard key icon from another save-state not in the
indicates that the analyst has keyed in current analysis path). However, we
some documentation which can be recognizeu that continually depicting
displayed in a window if desired. The the network would make the display so
SCAN function can be performed with very confusing that it would be very
little overhead. No data sets are difficult to get a good overview of what
accessed or moved except the small data was going on. We created the SHOW
structure that contains information on NETWORK and ERASE NETWORK functions to
the save-state, allow the analyst to see the underlying

network structure when desired and to
The RESTORE function allows the analyst remove it in order to restore the
to move back to a previous point in the uncluttered tree representation. When
analysis at which the save-state was the network is displayed, arrows are
created. Whenever the analyst restores drawn from the appropriate non-ancestral
a save-state and returns to the save-states to the save-state currently
statistical system to do more analysis, being scanned or restored.
the evolution of a new save-state has
begun. The RESTORE function requires The CREATE function can be invoked as
that data sets currently in the working desired whenever the analyst feels that -
data base are replaced by the data sets a significant point in the analysis has
belonging to the restored save-state, been reached. The options of the CREATE

P. function are shown in Figure 3. When
The IODIFY function allows the analyst the analyst creates a new save-state,

% %9. '"
V- . :

"--'-
*I

. . . . . .. . . . . . . . . . . . . . . . . . . .



the analyst is prompted for a title. Log Menu Data
The analyst's name was provided as the Gath
author's name at the beginning of the ScanLog veriFi LogInformation
ADAM session. Both the title and the Scan Plots Vef -o n
author can be modified if desired. The Edit Log >.ls

analyst can turn icons on and off, add Create Macro PathA, >ram

verbal and/or written comments, and Move Window > mprint (mac. Thst)

include or exclude datasets and macros Help >options(echo-1)

during the creation process. When the SMode ># executive film loop

creation process is complete, the Return # tes

analyst can either choose the option to DeadEndi"
store the newly created save-state andpar(cex=2)return to the higher-level menu or quit #par(colzl)areturn to the higher-level menu qi > # flcntll(-flefr") :.::
and return to the higher-level menuPa 

f n"

without creating the save-state. The >
analyst can move back and forth between
the statistical analys .s system and ADAM 

- "

without creating save-states. A New
[ Fouth Nde iSave-Staite

When a new save-state is created, the
star (asterisk) on the tree that marks
the current point in the data analysis

process is replaced with a box
representing the save-state. The newly FURE.. scanning the Log
created save-state becomes the current
save-state and any further processing
will proceed from that point in the
process. If the analyst restores We are concerned about how we can clean
another save-state, processing will up the log in order to make it more
proceed from that point instead, intelligible and still maintain in it

what is necessary and sufficient to
The DELETE function can be used to mark replicate graphics and restore the save-
save-states as deleted. The analyst state. Our current DELETE command only

cannot restore, scan, or modify a marks a save-state as deleted. We need

deleted save-state. The deleted save- to determine how to truly delete save-
state appears on the display as a circle states and what the implications of
without a title in it. these deletes are with respect to other

save-states which share the same data
The log functions are SCAN LOG, SCAN sets. We already know that a delete of
PLOTS, EDIT LOG, and CREATE MACRO. The a state with no children is different
analyst can perform any of these from a delete of a state that has
functions on any log segment. When the several children. We want to
analyst chooses SCAN LOG or SCAN PLOTS, investigate whether comments recorded on
a winoow is opened on the graphics cassette tape are really useful and how
device and the information is displayed their usefulness compares to comments

as typified in Figure 4. There may be that are typed into a file by the

more information available than will fit analyst.
in the window. The analyst can scroll
between portions of information. If the The environment provided by machines
analyst wants to edit the log or create designed for artificial intelligence
macros, ADAM will invoke a standard text work show great promise for both the
editor so the analyst can edit the log programmer and the analyst. We are

segment of interest, investigating whether these machines can
provide a better environment in which to
do both data analysis and data analysis

FUTURE DIRECTIONS management.

ADAM was designed by a group of computer
scientists and statisticians with the
needs and desires of the statisticians * This work was supported by the Applied
in mind. Our next step is to test ADAM Mathematical Sciences Group, Scientific
under the conditions of a real analysis. Computing Staff, U. S. Department of
There are a number of questions we are Energy, under contract DE-AC06-76RLO
seeking to answer. We want to know how 1830.
well the concept actually works in
practice. Our experience with ADAM will
form the basis for the next generation
data analysis management system. I-

.7.
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IMPLICATIONS OF ADVANCES IN COMPUTING FOR GRADUATE STUDY IN STATISTICS

William F. Eddy, Albyn C Jones, Robert E. Kass, and Mark J. Schervish

Department of Statistics,
Carnegie-Mellon University

Pittsburgh. PA USA

I INTRODUCTION 1.2. Intelligent Consumption ..

The ability of statisticians to perform calculations, Computer hardware and computer software have
both numerical and non-numerical has changed hpromp an integrai part of our daily activiiies. We
radically in the last few decades and the pace of find it necessary to devote substantial effort to
change continues to increase. In providing graduate keeping abreast of developments in both arenas so

students with appropriately modern training, that our environment continues to improve. We
statistics departments must respond by think it is wise to transfer some of what we learn
modernizing both computing environments and to our siuden's, as they, too, will soon make such

Cuffricula. These are intertwined, the course serving decisions wherever they might be.
needs created by the environment, and the
environment determining some choices among At the same time, because we do not yet have
topics in the course. This paper wil describe the essentially unlir ied computational resources, we
current environment at Carnegie-Mellon and the have to be constantly aware of the hlmitations of
content of a course that we believe should be our environnent, in terms of both numerical
taken by all Ph. D. students in statistics. We make accuracy and also computational efficienc,,. Again,
further introductorv remarks, then present the we think it is good to transfer this avareness to
resource description in Section 2 and the course our students, Ort motive in this case is partly
description in Section 3. selfish; graduate students can have a negative

impact on our shared environment if they do not
appreciate the various tradeoffs amongst the

1.1. The Past at Carnegie-Mellon resources available.

Thirtv years ago statisticians did their computation
on desk calculators. As recently as 10 years ago, 1 3. Curriculum
the CMU Statistics Department tetied on the
campus computing center s IBM 360167. , Course Cumputing is an integral part of the curriculum at
work was primarily theoretical, using pencil and all levels of study in statisitics at CMU. Virtually *

paper exercises and no computing. At about that all courses other than probability theory and the ., #
time ftie university made a strong commitment to theory of inference make moderate to heavy use % .
thfe wide-spread use of interactive computing for of I ou computing facilities. We summarize r
educational purposes. By 1980 CMU was acquiring conputatlonal activity within our program according %

about one DEC 2060 and 100 terminals per year for to level of study.
the central computing facility, arid had acquired
software such as BMDP, SPSS. MINITAB. IMSL,
DISSPLA. and TELLAGRAF. These facilities are 1. Undergraduate, Introductory courses for
used for coursework for both undergrad and grad routine elementary data analysis: Special
strIidents. The system can support ahout 500 topics courses such as: (i) Statistical
simulltaneous users. Software Packages and (it) Elements of

Statistical Computation.

I, 1981. the department began acquiring its own 2Mts reDa li nh
computer terminals; in 1982, we purchased our first Masters Degree: Data analysis in the

VAX. Byv toe time this appears i, print, the CML various statistical methodology courses;VAX, 8 the tme thi appers m pint, te CMUSpecial topics Corses. - .t

Statistics Department will have its own local area
network with at least six persona computers arid
teI workstations (including sorne color. Oir VAX 3. Doctoral Degree- Advanced Data
ha5 an attached array processor and we provide Analysis coursework; Statisitical ..
(ti own tiO facilies (including a pen plotter and a Computing coursework; Advanced topics
qraphics laser printer). arid seminars.

WP are part of a very large local area network 4. Specialist in Computation. Software

w,)tin iore than 250 nodes, which it scheduled tr, de ru n theoretical work on algotllhins: _ -.

I,(coiiie an order of magnitude larger in te rre Xu nu errcal analysis.
16 8rrorlths. In less than five vart we nave gon
it( iri total dependence onii a larie cetral conputer
facrity to riut own indietierident owfratlior based on 2 RESOURCES
a i itsianl ral number of Intercorrec ted nacthries.
(iw sitlahron has changed diairatically and will W IISI sonie of tire hardware and software
continue to change, it is out fot, in adapt our resotrces available, and then discuss tie approach
uuaduate programs to the new envronmen. lalken at CMU.

g Ir
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2 1. Hardware about $25.000. We don I vet have enough
experience with it to make tiseful statements about
its role in training students. but we feel that there
Is much potential gain from parallel computation

2.1.1 Microcomputers for statistics.

The 18M/PC (and its variants) and Apple'Macintosh
are fairly powerful machines, particularly when 2.1.5. Networks
compaed with what was available in a central
facoity a decade or two ago. Random access Networks come in various flavors. We have
niemory used to be a scarce resource; fow, access to several national networks such as Bitnet
lietsolal computers may have half a megabyte of and Telenet. as well as an extensive Local Area
str,,aqe or more. Some statistics departments rely Network (LAN); the best guess is that we have
neavil, on them. and many students will eventually about 250 machines on our LAN but some of themii, dr inq much Of their work on these machines, are located in Cleveland, New York Cit,.

Poughkeepsie, and elsewhere so the term local i.
A ,t-fantial increase in the value of personal somewhat abused.

.Occurs whentheN are linked together in
ai area network. We say more on tiis point In 1982 CMU and IBM signed an agreement tic.

v,. we will also briefly discuss software for develop a prototype personal computing nelwor
i ciocormputers. The goal is to provide all students. facult, and

professional staff with access to personal
computing workstations integrated into a network

2 1.2 Workstations which will provide access to data-bases such as.
the library card catalog, communications via mail

A workstation is a high resolution graphics and bulletin boards, and software. With the
rrrlireiial connected to a dedicated host computer. development of effective tools for non-numeric
A workstation offers an improved environment for data processing leg: text processing. graphics, etc),
rilos computing tasks, including data analysis and even departments in the liberal and fine arts are
s(lware development. Muliple windows allow one rapidly expanding their ise, and incorporating
1( perform a variety of tasks nearly computing into their curriculum. .
!.initaneouslv. For example, a data analyst can

i, ai a darasel plotted in several different The CMU distributed network will have the
fIlIF'Clions at the same time, or can look at plots following features:
(0 -.vvefal datasets side by side. or car compose
to,, it. one window while displaying plots in
antovr. 1. Independent access: Access to a

personal conitcler workstalon and il"
LilfP personal computers, workstations are more perforiliarcv IS tr'ot affected b', t.f

altat)le when connected in a local area network. niuntlne of simultaneous users onl the
Ttif disadvantage of a timesharing system is that network.
with many pol ential users, the system is often
'. f. loaded. Adding a network of workstations to 2. Flexible access: Users can enter the

* l, 'ystelr allows the individual users access to a system from any suitably equipped site.
Svsterl that is essentially independent of tie for example a suitablv equipped
number (if simoIltaneous risers. Our experience with workstation at home.
work salions is very positive and we find the
C(rinrirrtica Iion capabilities imparted by a network 3. Multiple windows: Users will be able to
lo ft, e senlial, maintain several contexts %

simultaneously. moving easily from one
task to another.

2 1 3 Printers Plotters, and Terminals 4. Communications: Users will be able to

iiini,! arii plnttir are ircessar - ari ca conimunicate with each other through
iii, ..i,( oi f r i od qilail texti arid fiqitte, t he network. There are a mail facilities.
colvii sviril . Lad,'r prinlers arc, ver micir. ever I') file transfer capabilities, and central
iiiirt prd( ucii ori documents, bi.ll lo rotirne liarl- database access.
Copl\ Output a line printer and all inexpensive M as
plotter will sujiflce. Graphics teriniials. however. 5. Mii-riedia capabilities: The system
vatf

,  
sil-lant lady in provldinct the capabilities that will be able to generate, transnit. and

ait' e -ent ral flr some research. Strict it is likely store video infornation. including both
that pi-ce'

, 
will continue to come down. and trie static arid dynamic inages. Trier are

Si.i r- t (|raloical inethodr of staislical analysis rlars Ior audio capablites as well
will irniinltif I( increase, it i. a distilrct advantage

urer to l'VC onn f an)nilia, withn locally 6. E xp a ti d 11,i1111 Currently ti( _s i s tei a
i..oi iriAmmrail wIraphlc.- rernritral,. iwhlether slow, about 50 wik Siahoirs Wiltitrn . e-ars f

Fn til- DEC GIGi. or fast arid pow rfuil, like the tie sySeI Will espaind t, tnoiisarrds of."
virnt-ii 4, .' Clven tirs to(st cornipiters that are workstatiornsa, aianlr f {terier al c ()n tlnrq a,

-  
well. It e". ,.""%,

r Ie, C-' car tI)e less expersive alterratives to 7. Cost-effectiveriest, Tine pricen Of .

sari alirrP workstatrons persornal Con ilites are dec irinrimm
relative to cotipuing power nticr n-ore
rapidl% thanI te iices of large scale

214 Parallel Processing time-sharimg cornptrlerS.' :. ,.:
WP tiar recently . added ari arra. processor The planned environnent has four s stem .
'attached processor) to Our hardwarp ":lable It liar elenerrt
rourghl

,  
tip power of arl IBM 3083. tiil oril cosl " a

- - - ---
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I Personal Computer workstations 32ui 3. Graphics: Life with a graphics terioinal
fi cessir s capanle of pXf'cuiili 1g is eassest when there is a good Iibiai,
Miooi instructiorns per second, having 1 of graphic& subroutines. 1"cludirig, if
Megabyte of memory with a 1 MlIton po Stie. SonicV f perfIor m IiI
I.ixel display of bit-map graphics Ia 3M transformation and rotation locall, It
niachme). The machine wit have no( (lisk dies not seemi especially desirable I' -

drives (1o keep the price in the rainge moist students. to tiloilam in a low-level -
$3000S$6000). language.

2. File servers with iocil disk Stinraite and 4. Siroutine Libraries. Among the most
othler special facilities Suicn a- laser important toois for the research worker16
printers. optical scanners. etc. and practitioner is the subroutine libtary.

3.A omiiiclinsnewollioiq heGaining an ahility to understand
3. Acormiirica ion newiri ri riothecomrputational aspects of a problem at a

Workstations to file servers arid the depth l sufficient f or writing good
central facilities. programs that make use of high quality

Siiproiitines suh as those inIMSL and
4. Central computing facilities tin large LINPACKS.shoul~cd tie a central goal of

scal onlinle storage, iarm- scale c ompting educatiPon for gr aduate
ciriiliit at ion, and othe r Slili. rarizeil students in statistics.
seirvices.

Sitnce the cost of personal coornti liii faiili ir 5. Symbolic Corrpttng Statistical
decreasing mrore rapidly thain thai Of ari-ri svvremns, problems are being solved with the aid
this approach appears to tie IIIt- ea~.l e~lrersivt- of symbol manipu~jlors, Suich as

wyIprvdacesto compumo tacilities, for MACSYMA. 'See Gong. 1983.1 like
w ampu topoide nacces facuilty. students will benefit by having

the amps comunty.a manipulation package available.

2 16 Computing in Our Department 6. Data Base Marnagemient, Altthough data
bast- management systems are inor often

Wenv 15FTE facutty. about 30 graduate appreciated as contributing to statistical.7
Wuen5 have 15 diitaivlerlraiafIh aspects of solutions to problems. their

staff are arm integral part of our environmirent and, great otility trakes experiernce wIln themr
ini tact, are thre only onies with gmiararrreect access valuable foi studets wito will
toi our VAX., Our main processor is it VAX 11t750stbeertvwrrwihlgedast.

* ~~~with 4MB of memory. 900MB of disk storage, a ~~-**~
iraiiicape drive. 24 terminal litres. 3 distinct 7.Mcooptr Sfwr We have2

* neiwcr, interfaces and a float ing-point accelerator. exrrrer eea saitcl akgr
* Diii t Prrhinals are connected to it trrroiigfi a large Wit ti most lv iscour agig rslst

central switching fac#Jity which provides terminals dletailed reviev (if oire, reasonably good
tre opportunit,, to connect to any of a number of package is given p. Schervish 119851.
other Conmputers on the camipus land. equally. Afre, leavinur C M U. some of oil

*providfes other terminals the opportunity toi connect students, WI1 work primarily Oil
*ton our computer). In addition, we nayv S IBM microcomputers. arid it is; worthwhile tco
*PC XT personal computer. 2 Apprle'lacintosh give theie) t~rep littiurity to learn about

* pesonl cmpuers 2 UN 220 oi~-4aiori-.andsoftware for rricros while they are here.
* liv the time this appears in prinit) VAI, srat on 11

wor satinslech it 3B o oe ii.a 0M 8. Test processing' F acty arid Studenitsworslaion ie~h ith3ME()I301I~zalike make use -of SCRIBE for docuimernt
dii I. arid trie power of a VAX 1 1 780 arid a
Tekrroriics 4125 color workstation. potconrnigfo orehnojs

to articles and dissertations. III
confip71ton with comnputer
commnricationrs facilities, this pronmises

2 2 Software to atIer the wayv marry Of Us ConduJCt
our research. For example. this article

*There are several categuiries of software triat are was a collaboratiorr of four authrors who
*relevant. comimunicated prirriarily b " comiputer

il, , unc Iikirig I (ro assirig drfa ftIs arid

1 . Operating Systems- UNIX In! c Iepa r Irvsonlakaom
becomling the most widely -1rsert
operationg systemi forr muir' arid
mricrorcomptuters. Situdents shimmlil oel 3 CURRICULUM FOR PH1 D STUDENTS
soniC experitence vvit I it. Onl tnt orte'
hand. detailed knowledge of Oiertaftii Cornputing haw, becomeni a basic roiri lor Itlt thre
sy5teris, is rarely, of girear I. v rI theory arni thle practice of sralnsrics. rrniici as,
statisticians,. l0ne exceptiorn is, wheii ti rrreasiire treortlic piritatilit-, is a ba,.rc tonl tot
tlas to handle large arrays witn ,iriiai mathenatical star t incs. arid slrotlr haive a ,iniilar
rrreomorv operating systens.l ilace In it(lt ciirriciomii, Sitiilir, i(rr, Itilusi whoi

are tr lilaninro in i-rn'cairze it, statisticalij

2. Sratisticai Packages It is. of cotirsi., ccrrrpiitin. rvedn iiw Ii awair'O i tW mhen-, andi
r'-seiitral for shidenits to get entrir Pnc practice ol coinilm
v"rth tire most Commo statistical
hack args, such as BMIVDP arid SAS. arid We f Outiti 1)01 a rv 1 innlsise C Oir- c in)
I ii-. also rellfitl for fhth I( to ~ ry fit( statistical clorpli ng. One (it ins (Edis Ihlar. tatiolni a
newer, extenrsible programs defsrocied fow simiilar coiurse sevveral times, arid a related ccniirsr'
rnmtriactive data analysis, such as S anid Was tatighl liv tw ofn us together (Eddiy arid fassl.
ISF At Carrine-Melirn. this couirse I s ur esent iv



irrrteqr atret irtlo a two seinester cool So iri Data example. it is well Inown to the COMptifitrg
ArralS ir. The inrtegr at ion, however. IS PInt e r Otligl conmmunitr Ithougli Oft en riot to st iiden s, that

-for tOe miost part we deal first witi Comrputing computation of a slimi of squares by the scr-called
arid ftnen with data analysts. There ate Sornie nice "ds-calculator' algorithm
(riilorltllrt, for takirrq advantame of lIre

*Coirpierrientar nature of these t wo arevas o f v'-n.
*st atstiPCs. out many of the toprcr, are tiasiPC

plerneits of computing and so Must h~e ltigtl first in frmrp Ical rinstablP. Students should iPArrr of
oin their own, the better methods, arid wtiv thre,, are Supteri0r.

iSee Chan, et al.. 1983.' We also Introduce itie S
Cleai, ometopcsmus belef ou ofa oe- techrriques of error analysis. incluiding brackrwards
Clea1  sme opic orst e lft ot o a ne- error analysis and stochrastic error analysis.

senlester course. Our, choices reflect niot onr, -

pildlOelos, atroil the relative Importance of various5
tOP;cs. OuL also the existence of related courses in Sltrdents rieed to indlerstand that different

*the cetrartmerit. Some topics that are, sorrieimes niacrintes use different data represerrtatPorns. arid
mentioned a!s irmrortaot in a course er satstca differerr tectrrrorocies for rorundinig. Tire shrould

comptirq fr heter int Oter Iar~ ofour appreciafe the eftpr of these differences onl the

CCU-1 P curcIllnr). For exampitle. tre adiolrt Ofi Cit ntmres acctitacs, ot cormtiit, arttrrrrtrc. Tihey Should also
tor ant exterisitile software paciage : a lelirilfial Itnow o f InCi IEEE st andar d for f loat ing poiri
carr bp covered inn the staitiscal Solt.a-' pac~aopc corirtat orrc". arrd tiirderstarrd Its advantages,, and
Corse. This IS ant uirderar aduate cms It u tires sh ild tie crrgrrizart of prorgrammng nilloris

crricilulln. throiigh several graduate strileris isall that achieve the effects, of extended precision.
attend rt. For alternative suggestionrs ser, Bates

lt9Sr ad kerrtedyff931.3.14 Data Structures

Sfiiderrts wrho have programmed in Fortan or
3.1 Fundamental Topics in Computer Science Pascal wilr irmow whrat an array is, hilt IyorcaluI

t hey have no experierrce, or ever) avweness of
(rffrer data sltructtures, toe use of porrrter-,, arid
related algorithmrs. We introduce stridurirts io a

3.1 1 Computer Organization and Hardware variety of uisefiul data strurctuires Inclridinig L inear
lists and linrkedf list-;, arrays, graphs, frees, arid

We feel that it is Inmportant tr, Ma~i air rash tables. At tire same turne we cover a varrers
-atrtircrai-on for ton( wrqarizaliomral sirrictilir Of a of related alq;orithn. Such as rilsertiml, and
*coimrier andr Suspect that tthis Aill tiecoir deltiri ofi data liten's ftml threse stritrirs.

..orrriar minn' imnportarit as var OP, ri rInd, of tralarrcirrr i tres, gartiage collection. Pic
* coirciirer cormplitatrrrr trecriii ... rIimoit

cornirrrorlpace. We ttrereftr discioo tie orosi
* tac I C veoieii of atnctit ec Itire, dtd s CIut m ir, 3 1 5 Basic Algorithms

eVrltral ficcssitig un. irnror . arnr mirrit 0 iltfilt
rievicr. It ca' Ire ;40rthwhilp to, rsCi-' trusse. 1hr artrflriri t o ailtniritirr relairru IO (Jaia
arid rrrcroprrrgranrnrrr. We ilsujalls lark alrlow tre sirilcimir'' thirnim aI tiaS IC aoIr I thor' arid
aictirrectrr of a particular mactine it, srrrnr. rdetail. Ill'rlitcar r55rues triat stldrriir. storild ti aware of,

* .aird it Iriakes senlse Ito discisc. ther rrracrrrrre that Clii list iricimri Iteration troios Students Cleans
Stuidenirs will rise riost heavily (rirrirrr , triat knowr thirsi. recurision (the divide arid crrrt~iie
mractrirri is tie DEC VAX 1 1 750 rrr rOM PicIS, stal eq,. iFT, Iirrear t Iire (irrvdr arIsI ,, SortIing.
iteration w(i rrI also fuslir ire VAXStatirr 1i. searchino. arrrd NP-Cornretetiess re.g.. ire Itavetirlo
Var lorri iini. oii parallel arciiitecttlve crrtid I- Salesmnr protlerni

*inclrudert here Drt we prrefer in' lI .iittii 'ir
mraterial iuntil we actilall5  discus' colicturrei
p roc essirrq ii (lef all. 32 Numerical Techniques

* 3 1 2 Data Representation

fur ri'r..ir iriiulr nt ilril data 3 2 1 Linear Algebra
irr.i....can..i1 a tin itf 1iil'rrirfri I is esseirt irtriar srrrerr nderstand hoiv% tire

* 5i''..t'irll rirri,'i, topics, ot, ar arittFnietrc. pin oipir tr'o (, ed stuae ier eiir
ariar I' rarirfirn nirnrter p'tneratiori. arrd riaslin. are. ir'h it tin. l erf oiresliner reed t ,on

tis iirii'.i tiilS iniwleit I 1c It, also criticar tI o irde"starirt un' crilirirta prirrr tils ofe naeessar

trillairnerrrorg We feel it 1 i'55Ciit rlat thtat erinnn'saior rit (ii Cnrriter .. dcrurripeof Gaussiof

'I '.ti-Ir'rt Irtisand M~e refireseintat rus i! I ne~t X Y . I re r ent inp I tindr r'rsandr tile ofrrtninirrral
ow,,, trir iiacire tril also onr a varier Oif decrrrnitrirrn ii', rnrtr .... rirrSeniolde, ritalurnS.

miorniadlrnls We rerfixed pontir'nols, ieOR tc.nllrrtii n i'siriiist
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~e frarrn irrrronier trrrrrqti F i4cConirirr, It-no in r otinn iari these rOpir, are

F Riratrirt tint staridail.I) chnaracter data IBCD. covpeer "t Ir. Itrwiir a fir r-veal uradriari' (irnirsi
EBCDIC. ASCrIr. arid tint strrrngs. in iiiatnripIrrnr al trntr'l.Instatistics,. 1-tIrr I

Wortffr W-Ii' rit Ari' ltiatitioC freep Sorrlr'irtr

3 1 3 Computer Arithmelic Siritiltl al-i minirfesrain vhtraln itairrer arid whiat o-
lost when tine connilnariorrs are peifrmied onl X~

Basic t ti' rnreitarnincr of olimericii ara.sr is,
Irinidr--ardiric of Compiter anithinretic arid riliiriu Thrie is a variery (if itntie topnics. we cover In less
pri %tIiiderrs Shoultd be awarep o' err. trasic detail. inc Iiurri oer'rrPC t -verqeii alre oitr iorl
inn' rat nil, wich are av ailatrle. hurt trier ir suoch as i' s,, irirn rc OR imethnod, criniircr
tier fI ... ert arid the typesnlerr atci ici. imnr ni coriniitatiniiar accnrracs. ANOVA
sici' Cr ohrfidw. under fucw. arid noirirlfirrio F .r calcillatiuirir lti onftirlrral riesigos arid Coriicqate

itnadrert technrfiques for rirr-rthrogorral desins
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3 2.2 Optimization 3 2.4 Quadrature

Aro ion y cornpUta3troral piroblemsr of applihed Siridenilt, SliOLild ic aware of ifri' pofrulaZr goladfiarUre

statistics. optinmizatiorn i s ubigriroos. file mo0st methods for evaluratring definite irrtecirals 1if Ipcoriorr applicationl tierri nra'orrriirr irkilihood imiportanit t o d, s r w' . fi notie-'lef LlOP ofI
esri11lat [of. An excellent recernf Text oin nirriiear (Iradrafrl forririla: r'.g., for Gair:,lair ri N,,'wii-
optrinoiZatioli tnar we rave used is Deris arid Cotes griadralire'. fra.ing well-known errol frnurtd

-. SChratbel f1 183,. see Kass (198'Ai for at, extenided arid also adaptive giarratirre' mretfhods. cilci as
revreW Fi' n-clUaiirs Fortrarr froqrairrs are also trie IMSL routine DCADRE. The stopfpfing title for

available. e.g.. in MINPACK' and tMSL. adaptive goadratire oF ciricial, since one, can
introdcec errors i11fo fire SOliin ts uISing Stopping

fVr' treIeve trhat Students rreed to riodrirslaird both role,. based only on mhe change in approimations
Itie rrI irretrcal and computational nssruer. In achieved at suJcceSsive ieratrons. (See 8oirrer airid-
Optimiizationi. We consider Newtorn arid Newton-like Scfiervrsrr. 1981. and Schervisir. 1984, fr exarnpies.i

nitrcis. an te imre netod l~'ler ard The error s become particular ly tr oribesorne in,

Mead. 1965, for general mnimnization firotilerirs. ancf muftivariare integrals. Students should also be,

the Gakiss-Newlon niethod arid detivative-fp least- expotsed I( t ire Monte C arlIo nmethods o1

-Sutoai e . legr.. flatistion anid Jentic i, 1978, for integpration. rticroirdirg imritanice sarsitling.
*niririlrear least-squkarer . We enpfect lil 'ii idetrtl 10

- -learn lire n~asic analysis rociridint it)i ciiliver urienc
atilf rates of corivernerice arotilmei,. r's srroird 33. Computer intensive Methods
air iiiilfervstanc the slopping nun's. mi adiftrioni. ssi

asortie ideas for dleaii wotii ciiisiairitl
i/a v fvt ros Okoi, effIortI t(, Newinoir

Ick a ti dt var inS. 3.3.1 Graphics

rIi niOur teacinrg experience we rave foond it quite Muicf inlereslirig recent research in statistical
wvoriniiileo go over var rolls Newioririke iiiethoirf coimputinrg involves graphics. There is certarnis
"Ii tile iire-diriisonal c as e, arid eg qiini thPro in ,07 l a course sllcti as this for extensive
stridirirt. to write fro~trarirs 117iPoeriiiingi eacti (if discussion oif statistical grafphics, 1Iincldinci
It te. FCnriitile 5 discussed ItI i s irriportIarnt for nietirods skich a', profectron purtsuit, hilt we hass

sti(rIel~' 0understand lfte niotivalioli for itre rise rior vet empfhasized this area witrimr our version of
of Nfss rl-like methods, as well as to igain some Ifre course. An file least. sitiulerits nreed sort)(
idea of trip o'fircins available anid their possible awareness of the( rniritrrg efforts arid file esistinni

* fifall' . Firitrernooe. tire use o f di ff erence ni ethiods for dllsp Ilavii i rirmilIi v atirate data as.
ttI'tiliit5 I)i place of derivatives opens tne door to described, for examplfre. in Grianadesikan 119771 and
The sliiifs tf secant metrol wthich forrm tire hasis Ciaribens et al. (19831.
('f host avail able higqigal t gerner al-prpose
(rift lhcre isc c lever arilt sorirelires elegant
rrraltwir'atics ivolved. arid fis crass of nietniods 3 3.2. Random Numbers and Simutation
tia,. ticecivedt subcstantial attenioni in recent years.
Ani a'.riicr of secant nelhcidS triat is eirtrerrrel, Sirnikilat on nihod'. are, often used to evaluate tie
ll)Ifilrarir for staristics, is. triat lire approxinnations accirrac (if asvrrptot ic afinoxiniar ions; ill sonic

to thi Hessian rieterrorale. VVP riia P sure the cases, where analytical resuilts are riot available a
.,iriit aurticialf' trial tihe final H-essian ill thc sitrrilariiiri s ire urnl availabile tecfririgiie. Since-

* Ol~~~(Itfilit (It rosi tias-Neion pigain5 should tnot ranidomnumblliters froir a given distribution itis tie
tIulIS'i generated ft oi a seultllce oif uifirisir distriftuted

ranrdomr niriritrirt tr in asic protblemr IS Ife

i o . peocji soirie tirne or) Inca, l'rollraniiqn reratlorn tririrfolnis ISr ttitlPid ratidoini
andr c iiritrained optinizat ron plrtileiri Wec 1(1(11' nirrrer s. St andar d nietriodls inc lude t fre linear
(oo L a liC rirt rile aWitl Mi, I. wui-Iricer congr urerr $al rietirod. tire feedback, s II t registerP
Coor, i..i.. in) adiditioni we duscrtj sonic of Inc riretfiot. arid coirlt'orauor mrethrods sucii as Iit' idea

* iti'.Cliri' itll)zatioti piroblems.t a trillc trial w' of fiuactareri arnd Mslaugla (1965) usi' one segrierrce
*tclern. will tiecoirne inrceasii, iriforlatil f or of taridor titinilrr to shuffle arnothuer Once a x '

* stani tic:. segrijerce of uiifoinii frsitiiieut rairdoni rrtnumer
iras been gjenerated. obiservationrr firir artwirars
distribtrrionis may tie der ivedi br% %aiitj f1 echirii.

3 23 Approximation of Functions including 1155' (if tile inverse distttritrton firrcttori
arid accefitatice-telecltiot metids.

Arpprimrarioni Of furncticirn is afrcarfs farnnrliar to
- stx' sticr. sllepnts Iii ire ii'rrr of LafiTiosiniarlori.

lie chorces I-i andi 2 a re mo0stf airoiai. tr for The usual fltri of a Monrte Carlo exnininu is fir
rnari cr'nifritional prpnoses. prt . tumrn estirmaic, tire rican or sorire nofrer funrctionial of tie
aptritl li Orthogionral iolsliuiriiais, air a Is samf iing dist r itiit ior) o f a st ati stic Various,

harririar. turf rtrscrsstol oit thir Ise1 ml coinfiilil-I ti'(hllItii forr al alice redurctioin are, risedn
will trperir tiern itt a trinrrrr thrar traol, titets Inl lMi iricteaseifl Sa~nllil size, list' of arlittfetic
will li rave seert. Tis is a crucial lar? if their variatiles. arrid straificalioi.
rialrwrolaticai traininig. as we'll. sir 'I tirirli 1i01 1i

si fpild. Also funrdamrenital lc air ittoiliort Io' fii Moilf' CallI tr , It tecfrtngircs, have (,trp,
Inr , tnt r ntl flitiri aritltlniiinatiln loi afpircannnl Ii(, s alr-',t c aI facrIicov. iic liulirn fIrhe
add ..rnrn. .ei' ticIrkrde disc krsnu, of iner pi(Iiatin. evaliatiii (,I twit, ninii'iiiriai iriteral:.. eis narin

*Atithomri rnioniiornietric appruuxiniatiini ant tip Fast o Ii r c firsern fII III(I IIi artd l'I 1raliplng (
*F urine'- lrarnlsf orol7 thai ft' cI' oi'rli',d ill other' S Irjfi it: mtll itam a 5o(ii irnnfiranrini oii Itn'
* ciii IrK, it. filii'(ntaiici ink I'snrcilln'nn ol it i'li' fbasic enetirinno (f it-: central topfic it, statistical
- rinnill fi * , rianle Somire if1, I tl-o.'nl COih c(1 Irin.

* ~~aproxnimnatin fry splirnes is also tisefii
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3.4. Concurrent Processing [8 Kass, R.E. (1985). Review of Numerital
Methods lot Unconstialned Optitization

We believe that the most dramatic change in by J.E. Dennis and R.B. Schnabel. Jdoinal
computing in the next decade is going to be the of the American Statistical Association PC
evoltion of the various very high-speed 80. 247-248.
computers. Oui students need some appreciation of

this, and we discuss concurrent computation in
several parts of the course. Our detailed 19] Kennedy. W.J. 11983l. A curriculunim i%
introduction includes description of various statistical computing. Proceedin9s of tihe '.
architectures (see. e.g., Schwartz. 1983). Statistical Coirrputirng Section of the
mterprocessor communication networks, and a little Aitnetican Statistical Association. 65-66.
material on numerical analysis (see. e.g., Schendel.
1984). We expect that the next iteration of our (10] MacLaren, M.D. and G. Marsagia (1965).
course will include some actual hands-on work with Uniform random number generators...
our array processor. Jouinal of the ACM.12. 83-89.

(11] Nelder, J.A. and R. Mead (1965). A
sinrplex method for function

3.5. Writing Software minimization. Computer J.. 7, 308-313.

Bates 11983) reports that completion of a term [12] Ralston. M.L. and R.I. Jenrrich (1978).
project of writing, testing, and documenting a Dud, a derivative-free algorithm for
piece of statistical software gives students a nonlinear least squares. TechnomTeti'tics,
valuable sense of the requirements of producing 20, 7-14.
good software. We prefer to have sltudents devote
their time to learning the large amount of material (13] Schendet. U. (1984j. Introduction to
we cover, but we share with Bates the desire to Nutietica/ Methods tot Parallel
impart an appreciation of some of the concepts of Computers. Wiley, New York.
software engineering. such as top-down and
modular design and structured programming [14] Schervish, M.J. (1984). Multivariate
languages, and the variety of usefu tools for normal probabilities with error bound.
software writing, including the subroutine packages Applied Statistics 33. 81-94 (correction
such as IMSL and LINPACK. interactive languages forthcoming).
such as APL, and matrix manipulation languages
such as those in SAS or S. Thus. we integrate [15] Schervish. M.J. (1985). Review of the
these topics into the course where we cart. but do statistical package SYSTAT. An1 Statist
not devote much time to software writing per se. , 39. 67-70.

[16] Schwartz. J.T. (19831. Design alternatives
for ultrapertormance parallel computers.
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A NUMERICAL ANIALYSIS APPROACH TO THE TEACHING OF STATISTICAL COMPUTING

Sallie Keller McNulty

University of North Carolina at Greensboro
Greensboro, North Carolina

The growing field of statistical computing has created the need for students to
obtain a more formal education in the subject. This gives rise to the following
questions. Where does statistical computing fit into the education of statistics
majors? Is there some common statistical computing body of knowledge these students .
should receive? How machine oriented should this training be? These topics are
addressed from the perspectives of both undergraduate and graduate study in
statistics. Is it our goal to teach students studying statistical computing a skill
or the theory behind that skill? The answer to this question may be based on the
level of education and the background required of the student before entering a
statistical computing course.

1. INTRODUCTIO and undergraduate students is
discussed. Suggestions are made regarding
where these courses fit into the statisticsThis section of the conference is about curriculum and how machine oriented they should

t he teaching of statistical computing. is be. It is hoped that a result of the papersstatistical computing sufficiently important to presented in this section of the conferencebe included in a statistics program? Rather will be to stimulate discussion among those ofthan give my own, perhaps biased, opinion of us involved in statistical computing about thethe importance and nontrivial nature of issues mentioned above.
statistical computing, I quote M.G. Kendall
(1972).

bright ideas do not fructify unless we 2. STATISTICAL COMPUTING TOPICS
can bring them to bear on numerical material,Tw inestgcomterprsabu

and or any f or oustadingprolems as the training of statisticians have appearedwe shall see, the computer is necessary." recently in The American Statistician .The

the tatiticin rquirs a ullfirst appeared in May 1980 and was directed atth. ttitca.rqiesafl the training of statisticians for employment inmathematical armory to bring his solvinginuty Th seodaprdinMy18 ad

pca te ove int re ere te acin dealt with the training of the statistician forcan ake verif rquird."the federal government. As might be expected,
Statistical computing, unlike other areas teei osdrbeoelpi h

of specialization within the discipline of recommendations given in these reports.
statistics, has an ambiguous connotation. A Computing skills and a knowledge of statistical
popular notion about someone trained in computing was indicated to be important by both

statstial omptin is hatthe ar siplyreports. The specific recommendations in these
very clever in manipulating statistical aesfl nofu aeois
Software packages. This is neither the goal I nweg fasinii rgamnnor the outcome of a statistical computing langualegeo cetfi rgamn
education.lagge

One way to remove this ambiguous 2. Experience with several of the most
connotation is for those of us in the field to0 popular statistical software packages.
establish what major topics should be included
in statistical computing courses. It is clear 3. Experience with the construction and 6v^in what course a student will learn about maintenance of large data base files.
stratified random sampling and ratio
estimators. It is not evident in what course, 4. Instruction in proper numerical analysis*if any, a student will learn about random techniques for statistical computations.
number generation, sweep operators, and Ma ttsiin ol ocrwt
numerical stability. Ms ttsiin ol ocrwt

Kennedy (1982) that Items 1 and 2 should be aThis paper outlines topics that ought to required part of every statistics student's
be included in statistical computing courses. education. Kennedy also points out that the
Statistical computing training for both experience of Item 3 is frequently attained
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through involvement in consulting. For 3. UNDERGRADUATE PROGRAM
students specializing in statistical computing,

a special effort should be made to acquire this A distinction has not yet been made in
experience in data base management. To fulfill this paper between undergraduate and graduate
Item 4 the student would need to complete one education in statistical computing. In
or two statistical computing courses, general, the difference between undergraduate

and graduate study in any area of
There appears to be mixed feelings within specialization is usually the amount and depth

the statistical computing community as to of the material covered. The basic content of
whether a statistical computing course should the material remains largely the same. There
be a requirement or an elective for the is no reason tor statistical computing to be
statistics major. In any case, statistics handled differently.
majors should gain an awareness of what general
topics are considered to be in the field of At present, there are several recurring
statistical computing from their overall themes in undergraduate statistical computing
statistics education. One purpose of the text courses. These are data structures, data base
Statistical Computing by Kennedy and Gentle management, and the use of statistical
(1980) was to present, in one place, material packages. This may be due to the lack of
that is central to the area of statistical appropriate prerequisites for a statistical
computing. A brief outline of the topics computing course such as calculus and
included in their book is as follows, undergraduate mathematical statistics, thus

making it difficult to consider many of the
1. Introduction to the history and literature topics listed in Section 2. Data structures

of statistical computing, and data base management are some of the AC-
(Association for Computing Machinery)

2. Computer hardware operating curriculum recomendations for computer science.
characteristics. Thus, students could probably acquire expertise

in these areas by taking a course(s) to be
3. Computer software and programming found among the university's computer science

considerations for package design, offerings. If statistical package experience
other than what is obtained in the required

4. Floating-point arithmetic and an statistics courses is needed, then perhaps a
introduction to error analysis. specific statistics package course should be

offered. To avoid unnecessary confusion with
5. Random number generation, testing, and respect to the field of statistical computing,

an introduction to general simulation it is suggested, by this author, that courses
methodology. of the nature just discussed be titled

something other than statistical computing.
6. Approximating probabilities, percentiles

and other special functions. With the prerequisites of calculus,
probability theory, and some computer

7. Numerical methods in linear algebra with programming, a first course in statistical
emphasis on methods most useful in computing for the undergraduate statistics
statistics, major could include Topics I to 6 from Section

2 and some graphical procedures. This set of
8. Linear least squares. computations material does not require a sophisticated

including model building and solutions background in either linear algebra or linear
under constraints, models. It would be very easy for such a

course to turn into a general numerical
9. Nonlinear least squares computations for analysis class. When teaching statistical

unconstrained and constrained problems, computing, care must be taken to emphasize
which numerical methods are important to the I:j

10. Computational methods for alternatives to statistician and why they are important. A
least squares --- robust methods, second course in statistical computing for the

undergraduate student is probably not
A partial overlap with the material listed necessary. The student may benefit more from

here can be found in Computational Methods for an additional mathematics class or exposure to
Data Analysis by Chambers (1977). An another area of specialization within
additional topic included in Chambers's text is statistics.

Igraphical procedures. Another interesting book
on the subject of statistical computing is
Statistical Computation by Maindonald (1984) 4. GRADUATE PROGRAM
which deals extensively with Topics 7 to 10 in
the outline. It is appropriate, in this To study statistical computing at the
author's opinion, to include all of the topics graduate level, prerequisite knowledge of a
listed above as well as some graphical scientific programming language, statistical
procedures in the battery of statistical theory, and statistical methods is needed. For
computing courses which is offered, a first semester graduate course in statistical

."



computing, Kennedy (1982) recommsends covering determine if the statistical needs are being
all the material listed in Section 2. This statist jed by a given algorithm than to be a
results in breadth but not depth of coverage. top notch scientific programmer. The
Kennedy suggests an advanced selected topics statistical computing student ahould, however,
course be offered for those students interested gineog bagrud nastitcl

S.in specializing in statistical computing. The computing course to communicate effectively
success of the statistical computing program at with the computer scientist about stabilty of
Iowa State University indicates that Kennedy's algorithms and programming considerations which
plan works well in both exposing the statistics optimize computer reaources.

in preparin'g students to carry out statistical Perhaps due to the increased interest in
coml~ringreserch.general computational methods, numerical linear
comptin g eseach.algebra courses and database management courses

An ateratie totheproram escibe by are more readily available in mathematics

Kennedy (1982) might be to offer two ado optrsinedprmns lo
nonsenuential graduate statistical computing students are exposed sooner and in more depth
courses. One would cover Topics 1 to 6 and a to the statistical software packages in the
second would cover Topics 7 to 10 from Section standard statistics core classes. Students
2. This would provide a more in depth coverage completing the courses mentioned above learn to
of the subjects. Couraes of this nature could handle canned routines and learn to do some
also allow time for inclusion of extra scientific programming. Using these courses as
statistical computing material of special prerequistes to the statistical computing
interest to the professor. Although greater course(s) would make it possible to concentrate
depth of coverage and a choice of topics may on numerical methods in statistics with less

-better suit the needs of the student who emphasis on both pure numerical analysis and
competesonl onecouse i sttistcalcomputer programming. The software packages

computing, this program may fall short of cannot possible keep up with all the new
meeting all the needs of students wishing to statistical methodology or incorporate every
specialize in statistical computing. possible twist in the more common methods.

Consequently, it is desirable to educate
students in statistical computing in such a way

5. MACHINE ORIENTATION that when confronted with a statistical
analysis problem the will not be constrained to

As is indicated by the title of this those methods that are available in existing 4
paper, this author believes the numerical computer software.

analysis aspect of statistical computing should I
be emphasized more than the computer
programming aspect. It is, however, important 6. CONCLUDING REMARKS
for students to understand the constraints
imposed on the numerical methods by the Minton (1983) discusses the establishment
computer. This knowledge is the key to of statistics as a discipline. The criterion

imprvin thir ompterproramingskilsgiven in Minton's paper for the visibilty and
imprvin ther cmputr pogramin skils.recognition of a discipline can also be applied

The computer can be effectively used to to visibilty and recognition of an area of
reinforce the algorithm construction and the specialization within a discipline. The
numerical analysis necessary to bring a criteria are
statistical concept from its theoretical form1.Ateranboyflirtu ;to its computer approximation. Too much .Ater anboyflirtu;
computing tends to pull the emphasis of the
statistical computing course away from the 2. A significant number of professionals

statistical and numerical analysis issues andwokn intefld
towards computer science and computer3 NoetaafwpresinljuasL

regularly publishing new advances in

To some degree, the amount of computing the subject;
will depend on the background of the students
in the class. Also, more computing would tend 4. A significant market demand for its
to be included in an undergraduate statistical services.
computing course than in a graduate course.
Direct exposure to some of the statistical The field of statistical computing is
libraries would be beneficial to the moving towards fulfilling all of these
undergraduate student. The graduate student criteria. To expedite this effort it would be
will usually become familiar with these helpful to define more clearly the statistical
libraries through other statistics classes or cmuigbd fkolde hscnb
in their cousulting experience, accomplished through our statistical computing

course offerings and through the exposure we
Iti oeipotnrhta tdn h give students to statistical computing in the'

has studied statistical computing be able to other statistics classes.

% %
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ANIMATING STATISTICAL ALGORITHMS

Marc H. Brown

Department of Computer Science
Brown University

Providence, RI 02912

High-performance graphics-based workstations have made possible a quantum

leap forward in the quality of tools available for teaching and studying statistical

algorithms. For example, the Department of Computer Science at Brown University

has a specially designed auditorium/lecture-hall containing 60 such workstations,

interconnected by a high-bandwidth resource-sharing local area network (LAN).

Rather than using a chalkboard or viewgraphs, instructors are able to use dynamic

simulations of algorithms being taught. Students are able to interact with these

real-time animations in order to gain better insight into their operational

characteristics. Students are transformed from passive listeners to active .

participants in the learning process.

In this talk, we will describe the software environment we have developed for

animating algorithms. Typically, animations contain multiple views of the data.

As the alkorithm progresses, all of the views are updated simultaneously. Users

are able to stop the animation at any time, control the speed of the animation and

even whether it should run in reverse, single-step and set breakpoints using entities

meaningful to the algorithm being animated. In addition, multiple algorithms may

be run in parallel in order to better compare and contrast them. We will also give

examples from the host of computer science and statistics algorithms that we have .

animaged, and show a videotape of some animations. -"

24 .12'
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Discussion on Teaching of Statist ical Computing

Richard M4. Heiberger

Temple University
Department of Statistics
Philadelphia, PA 4%9122

This discussion comments primarily on software design topics other than the
numerical analysis issues covered by the other speakers. It includes a short
discussion of my attempt to illustrate by counterexample the dictum that Householder
reflection calculations should be based on the numerically optimum reflection angle.

The speakers were consistent In their emphasis important difference to numerical stability that
on the fundamental area of numerical analysis. is claimed for it. It does, of course, but it
The major addition I have to the numerical was Initially difficult to construct a case
analysis theme Is a recommendation for the new where choosing the wrong sign caused
bock by John Rt. Rice [.1] as a major reference cancellation of significant digits.
for everyone's library and as an excellent text
for a numerical analysis course. Rice discusses I found two conditions were necessary for an
the derivation of algorithms, programming of example to display numerical difficulties. The
algorithas, and use of published software, two defining vectors, the ones that are to be
Graphs, examples, subroutines, and problem sets reflected onto a constant times the direction of
are In abundance. Pathological cases are the other, must be nearly linear dependent and
carefully treated. There are several chapters the computations, must use single precision
on design and use of program libraries. The accumulation or Inner products. Only with that
bock Includes the ACM index of all algorithms combination of conditions was I able to use the
published from -1960-fl980 In .17 major journals non-optimal sign to create a "reflection" matrix
and a detailed index to the IMS. Library that did not reflect the two vectors onto each
Subroutines. other. Neither near dependence nor single

precision accurmulation by Itself was enough to
In my course I also place a strong emphasis on make the wrong sign give trouble. Only when *I'

Issues of design of programming systems and Instability was present In both the data and in
*packages. Not only do I discu~ss Individual the computational process was there an Incorrect

algorithms, I also place them In the context of calculation. This example reinforces two
a package. Therefore I discuss communication conclusions. One, proper computational
among subroutines, design of overlay structures, paranoia, such as always automatically using
and design of user-friendly user Interfaces. I double precision accumulation, can protect you
stress the Importance of adhering strictly to from some potential problems. Two, well-posed
professional programming standards to make problems with stable data can lead to correct
long-term maintenance of a system possible. One computations even if there are Instabilities in
of my class projects is an assignment to write a the algorithm.
simple subroutine and attach It to an existing
package to take advantage of the user control
language and data management facilities [41 Rice, John Rt., Numerical Methods, Software,
developed for the package. I have used MINITAB and Analysis: IMSL(r) Reference Edition
[2] and SAS [3] for this purpose. (McGraw Hill, New Yorkc, .1983)

[2] Ryan, Thomas A., Jr., Brian L. Joiner, and
I also find it helpful to explore the boundaries Barbara F Ryan, MINITAH Reference Manual
of a problem. For example, while discussing the (MINITAB Project, University Park, PA, d1982)
Householder reflection, I decided to verify that [3] SAS Programmers Guide (SAS Institute, Inc.,
the sign of the reflection really made the Cary, NC, -1982)
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A MONTE CARLO STUDY OF PARALLELISM TESTS FOR COMPLETE AND INCUOMPLETE GRUWTHI CURVE DATA

Neil C. Schwertman, Sallysue Stein, William Flynn, Kathryn L. Schenik

California State University, Chico, CA, IBM Corporation, Boca Ratonr, FL,

& Data Management Computer Systems, Auburn, CA

Monte Carla simulations using a broad spectrum of dispersion structures are used to
compare for significance level anid power tests for the parallelism of the response
curves for both complete anid incomplete data.
The methods used are the split-plot, itotellirig's T-square, analysis of tire estimated
regression coefficients for each subject, successive differences, arid estimation of
missing data. For complete data the split-plot analysis using tire Ge isser -Greer ihou se
correction arid Hotellirig's T-square oil the estimated regression coefficie'rts For each
subject were best. For incomplete data tire split-plot anialysis usinrg tire Geisser-
Greernhouse correction fromi tire smoothed dispersion matrix was miost satisfactory.

I. Introduction

Frequently in biological, medical, agricultural structure. itnyrir arid Feldt (197U) estaiblishred
arid clinical studies measurements are taken orr that tire necessary arid sufficient corrditior for
tire same experimental urrit over time. Data noa adjrrstrerrt to tire degrees of freedom is that
fromr such studies, called growth curve, repeat- tire data vector for each experimental unit have
ed measure or longitudinal data, is character- tire dispersion structure
izrrr by large correlationis hetwirern tie airservar-
tigris ont tire same experirriital unit. Suchr data E 2

( = 4U+a J + Or + J at'
is properly analyzed using multivariate arraly- Pxp pxp px lIxp pxl lxp
sis procedures. hlowever when tire daita has miss- where 0

2 
, arid a are scalars, p is the num-

irrq observations the usual mnultivariate method- ber of time periods at which observations are
olirijy dnes riot adapt readily. Kleiibarrrl (1973) taken, J is a pxp matrix of aries, J1 is a p
proposed a rultivariate procedure tirat accommo- vector of onres arid a is a vector oF corrstarrts
dates inromrrplete data by qjereralizirig tire Pott- such that a' Ji 0.- Schwertman (1978) extended
rof F aidi Roy (1964) growtir curve mrodel. the Iiuyii arid Feldt. result by showing that that
'iiiwertmai (1974) ini a very small simulation dispersion is sufficient for incomplete data
stit anu d teri eper arid WooIlson ( 19812) iDo a miuch Sets as Well as rcomplete arid rio adljustmernt to -

morure extensive study shraw that virile Klejirbaum's degrees of freedom is required iii either case. r
rgenieralized growth curve model hais excellent .rchrwertmarr, f ridsinl -ind Magrey (1981) use a
lnrie samirple properties, tire simurlarted sigirifi- small simulation study to sihow that tire split-
carice levels are much too large for small data plot methiod is riot satisfactory for ttre analysis

se;,of orowlir curve data, particularly incomplete
dat a sets, whrich doerr riot trave that particular

!,chiwertrriaii, Fridshral arid Magrey (981) sirq- dispersionii st rructure. Collier et . al . (1967)
ilested a roripar,-metric riulivariate ap~proach did mii enrteiisive Monite Carlo study of tire use of
to the analysis of botti comiplete arid iricorip Fete tire Iei!ser-reiiouie correct ion. Their study -
qIrow tt cure data whricir was qluite sat isfac tory a3s!uiren theii dit shr'rsioi st ruc ture is knorwn arid
withi reqard to significanice level rut (ill nirot rises; tire st rurtirre to calIcurlate tire correction

;eeni to rave mucir power. factor. Ili tis paper, metihods of testirrg wich
rise tire i;e isser-irerririnnre correct ion, assumt,

rimce tire miult ivar iate appniiaci,; itn tire arinily- tirat tire disperrioni rmatrix from tire data is used
!;P; if irrnomplete rirowih ii nve &iIn airnive somre to caicilnite tire correctlirn factor.
iiiffliri It es var riUs ririvariate, ipirnncirs for
thv irini hyis of sriur daa rave reti stirrireste-d. Tire ptrrorose of thiis paper is to comrp~are various
A riirriri u rar iate aijalysi of ni rowthi curve alt errii lees frn tire ana lysis of complete and
rilh ; il ie sifl it-lt liiresirjrr witll, time perioud!; iricorrplete gnrowthr curve udata withr regard to sig-

; tire, ;tijpot I reirriri. Tis;rrn a readhily rrifini' level nirril power. lit tis paper tire
:4&r;i to inn rrri'iir dat a hwrn tire ;riiyasrepeirrs split plot ruralysn for both corrplete arid incas-
or, tire rir..rrrsrrsi !nl-i hirr of tho di ir vectors plete rtrta is !siiiniatedn arid comparnred to a sirc-

in, i- _ ;irtrir . hi,, ' 9',4) irwit rjii ci tire cessive dii fererice prrcediure suggnesterd by C.R.
ff. Ic t dirhiersirir -t roir ites or~r,cm tire F Ran ( 19',B) aun Ill I I (1968). Besides tire split-

it r ; in ('nie i!;aei ;11it ,(f rrrr~ ( plorl Fut qln !;liccessive, iffereirce procedures tire
ar risri rr i ;.isrient tio tire- ofr~c nlf reedomr rise of est inte cuti iifor tihe missing dtata arid

(A tiler I !;tat is;t ii to ar-irrrit fiii iii, itishrersrinni auimnar I i~ii data ii i tire regressinir coefficients

r.A A~i
-.-.... ,.. ..... .-..



for each experimental unit are rlo compared. E(yik where (i) is

The various alternative testiig procedures 
kI k kI k is

are described in detail in section II arid illus- th
trated with a sample data set in section III the change in the response for the t treat-

Tne Monte Carlo simulation study is described merit group from time k-I to time k . The

in section IV and the conclusion are contained test for parallelism of the growth curves be-

in section V. comes 4

Ha: A 1
) = 

2  
... A ((t) for k=2,....p.

I1. Description of the Testing Procedures k-I k k-I k k-i k (2)
Simulated This hypothesis can be tested by creating a

The following methods of analysis are compared nt(p-l) vector of the differences, say y-d4.
for both significance level and power in the and forming a vector of parameters A
Monte Carlo study of complete growth curve data (p-lit x I
(c-i) Split-Plot Analysis with time periods as c(i)
the subplot treatment. The Model used is consisting of the kin order k2,... pk-I k ..

Yijk 
+ 

Ii + 
Sj(i) 

+ Pk + IPij + 
eijk in sequence i =1, 2, ... t . Then

where i = l,...t, j=l...n, k=l...p, 1. is
subjet E~y) = XA where X is "

the treatment effect. S is the suject Eyd) = X
effect (Si " N(O, os2)J is the period nt(p-l) x t(p-l) t(p-l)xl

effect, IP.. is the interaction between the a nt(p-l) x t(p-l) design matrix containing

Treatment arid Period arid e ijk ' N(O,'2). t,n(p-l) x (p-1) aubmatrices of one arid zeros

Usually the primary interest is in the paralle- on the main diagonal arid all submatrices off
the main diagonal are zero. Th ttsbarix

liam of the growth curve, that is the 
T
Pik the diagonal cres to the jth reubmat

effect. The split-plot analysis is: on the diagonal corresponds to the i treat-ment group and the t, t' element of X is -7.

ANOV I1 if £' (.-l)(p-l) +t mod[(p-I)]
Whole Source df X(tt') where Z is the treatment group
Whlet_ X(2) of the eth element of -
Plot -d

0 otherwise
Treatment t-1 The first (p-1) columns of X correspond to

Error(a) Subject t(n-l) the (p-1) differences from treatment group 1
(=l), the second (p-I) columns correspond to

Sub Period (p-I) the (p-I) differences from treatment group 2
Plot (i:2), etc. To test H given in (2) a res-

0
tricted design matrix, XR , and parameter

tint x period (t-l)(p-l) vector, ' is used. The design matrix XR

Error(b) errt(n-l)(p-l)R
orb error tis a nt(p-1) x (p-I) matrix consisting of

For the Monte Carlo study i ~l....t2, j=l,...5 ones and zeros such that the tV element of
or 10n), krl, ... p=4 or 8. (When P=8 in the %

Monte Carlo study, a fifth degree polynomial was XR is
assumed adequate to describe the growth curve / 

]  
2 mod (p-l)

and hence the degrees of freedom for interaction XR( 2 ,' otherwis
was 5 instead of (t-I)(p-l) = (1)(7). The sum 0 otherwise
of squares for the higher order terms was
pooled with the error sum ol squares.) The parameter vector R is a (p-1) vector of

change parameters such that the eth element of
(c-2) The split-plot analysis in (c-i) with the
degrees of freedom adjusted with the Geisser- R represents the change from time period t

[reeihouse correction computed on the estimated to time period t + I for all treatment groups.
dispersion matrix calculated from the data. Then the null hypothesis given in (2) is tested

(c-3) Successive Difference Analysis. The by fitting the full model E(Yd) :XA and the
change in trie response is measured by subtracted
each observation from the subsequent observation, model restricted by te null hypothesis
That is, for model described in X(d) r XRARand calculating a sum of squares

(1) Y k " -ij(kl ) is calculated for all i, for regression for each. Then the test statis-

j and k=2 ... p . 1hese difference!, are repara- tic is

meterized such that

"A '_A

%
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Y'd[X(X'X)
-1
X - XR(X XR)-Ix]d/(tI)(p

)
) AA A

i )  
A simi-

F = k (k+l) + (k+l) (k+2) + (k+2) (k+3)

1'd[l - X(X'X)-lX'3Yd/t(n-1)(p
-l
) lar procedure is used for more than two obser-

vations missing between observations. The mod-
(c-4) Ihis analysis uses the Successive Differ- el given in (c-3) is the same however the X
ence statistic calculated in (c-3) but incorpor- and XR matrix must be adjusted to correspond
ates the Geisser-Greenhouse correction given by t R eto the differences in Ydadnwmycnan,- -

2_ 2_ n o a oti
2(p -l)/(3p -4p+2)(See Schwertman and Heil-

brun (1984) to adjust degrees of freedom, more than just a single one in each row as is "

the case with complete data. If the element in
(c-5) Hotelling's T-Square statistic using the Yd is a difference calculated with one missing
complete Multivariate data. value in between then the corresponding row in

both X and XR will have exactly two consecu-

estimated regression coefficients as data. For tive ones in it. If there were two missing

each experimental unit the data is summarized by values then that row of X and XR would have

estimating the regression coefficients for a three consecutives ones in it and so forth.
quadratic growth curve. Since interest is pri- The test statistic is calculated in the same
marily in parallelism of the growth curves only manner.
the coefficients of the linear and quadratic
terms in time are used as bivariate data for the (1-5) The Successive Difference Analysis des-
Hotelling's 1-Square statistic. cribed in (1-4) with the degrees of freedom

adjusted for the dispersion structure using ..
The following methods of analysis are compared 2ajt for t peso srcuesi
for both significance level and power in the E =2(p- 1  2 (See Schwertman and Heil-
Monte Carlo study of incomplete growth curve Op 4p+

2
)

data. brun (1984) and using the maximum number of
observations per experimental unit (the most

(I-1) The split-plot analysis similar to that conservative c) as p.

described by (c-1) except that the degrees of
freedom for error is N-nt-pt+t where N is the (1-6) The Successive Difference Analysis des-
total number of observations in the entire data cribed in (I-4 with the degrees of freedom

set. adjusted for th!. dispersion structure using
2 _ 2 _I':

c 2(p - l)/(3p - 4p + 2) (See Schwertman
(1-2) The split-plot analysis in (1-1) with the and Heilbrun (1984) and using the average num-
degrees of freedom adjusted with the Geisser- ber of observations per experimental unit as p.

Greenhouse correction computed using the esti-
mated dispersion matrix calculated from the in- (1-7) The Hotelling's T-Square using the esti-
complete data. mated regression coefficients, described in

(c-6), as data.
(1-3) Split-plot analysis in (I-1) with the
degrees of freedom adjusted with the Geisser- (1-8) The Split-Plot Analysis using the incom-
Greehilicuse correction computed using the esti- plete data with estimates inserted for missingsated dispersion matrix from the incomplete data observations. The estimates of missing values

which is smoothed if necessary. (See Schwertman are obtained by determining the estimate regres-
and Allen (1979) and Huseby, Schwertman, and sion coefficients for a quadratic growth curve
Allen (1980)) and using this equation to fill in the missing

observations. The split-plot is analyzed as
(1-4) The Successive Difference Analysis des- described in (c-I) with the degrees of freedom
cribed in (c-3) using the incomplete data. If for error adjusted by subtracting out a degree
one or smore observations are missing at time of freedom for every missing observations esti-
periods between observations then the successive mated.
difference will estimate more than one A
parameter. For example, if observation y.. and (1-9) The Split-Plot Analysis described in

i J k (1-8) using the degrees of freedom further ad-

Yij(k+ 2 )are observed but Yij(k+l) is missing, justed with the Geisser-Greenhouse correction.

the difference -is used to esti-
Yij(k+2) Yijk (1-ID) The Successive Difference Analysis des-

mate the sum of two A parameters, cribed in (c-3) using the data with estimates

(ki I)-.) Similarly if of the missing values included and the degrees: k
n 

(k~+l) 
+ 

(k+l) (k+2) " iial fYijk of freedom for error adjusted by subtracting a ".-

and yij(k+3) are observed by aij(k+]) and degree of freedom for error for every missing

rvalue estimated and then applying the Geisser-
SYij(k+2) eYij(k+3) - Yijk Greenhouse correction.

used to estimate the sum of three A parameters
(1-l) The Hotelling's T-Square analysis using



the data with the estimates of missing values in- - th observation in y

cluded. X(el) 1, X(t,2) is from the control %.%
III. An group

Example l otherwise

To illustrate the various analysis procedures 1 i !th observation in y is
compared in the Monte Carlo study, consider a F ith i'y"

portion of the Grizzle and Allen (1969) data for X(t,j+l) from the j subject in the con-
the Coronary Sinus Potassium levels of dogs. The trol group j = 2,.. .9
data is: 0 otherwiseControl (Group 0) ifE"-t"Time Periods ) if 1th observation in y is

Dog 1 2 3 4 5 6 7 X(e,j+9) from the j subject in the
4.0.ieeidtreated group j = 2 .... 9

1 4.0 4.0 4.1 3.6 3.6 3.8 3.1 0 otherwise

2 4.2 4.3 3.7 3.7 4.8 5.0 5.2 th

3 4.3 4.2 4.3 4.3 4.5 5.8 5.4 for the t observation in y the
X3t,18+) .. appropriate orthogonal polynomial

4 4.2 4.4 4.6 4.9 5.3 5.6 4.9 X( ,l8+q) coefficient for the observation

5 4.6 4.4 5.3 5.6 5.9 5.9 5.3 period using the Anderson and Hous-
mar (1941) tables (q = 1 are the

6 3.1 3.6 4.9 5.2 5.3 4.2 4.1 linear coefficients, q z2 are

7 3.7 3.9 3.9 4.8 5.2 5.4 4.2 quadratic, A = 3 cubic, etc. q = 1,
2 .... )5)

8 4.3 4.2 4.4 5.2 5.6 5.4 4.7
X(t,23+q) X(t,2)*X(t,18+q) and are the inter-

9 4.6 4.6 4.4 4.6 5.4 5.9 5.6 ato oun nXaction columns in X. T

Treated (Group VI) To test that TPik 0 for every i,k the sta-

tistic is F (SSRF- SSR )/(df*MSE) where SSR"

Dog 1 2 3 4 5 6 7 and SSR are the sum of squares for regression

1 3.1 3.5 3.5 3.2 3.0 3.0 3.2 for the full and restricted model respectively, "

2 3.3 3.2 3.6 3.7 3.7 4.2 4.4 MSE is the mean square error, and df = 5 (fifth

3 3.5 3.9 4.7. 4.3 3.9 3.4 3.5 degree polynomial was assumed adequate to des-
- cribe the response over time). Then

4 3.4 3.4 3.5 3.3 3.4 3.2 3.4 F = (2359.81752 - 2357.04539)/(5(2377.92 -
- 2359.81752)/98) = 3.0014. This statistic is

5 3.7 3.8 4.2 4.3 3.6 3.8 3.7 compared to the critical values for an F with

6 4.0 4.6 4.8 4.9 5.4 5.6 4.8 degrees of freedom 5. 98.

7 4.2 3.9 4.5 4.7 3.9 3.8 3.7 For the split-analysis using the Geisser Green-

B 4.1 4.1 3.7 4.0 4.1 4.6 4.7 house correction (c-2) the estimated dispersion
matrix is needed. The pooled estimated disper-

9 .5 .6 .6 4.2 4.8 4.9 5.0 sion matrix for the data is

(Underlined values were deleted for the incom-
plete data analysis to simulate the missing data.) p.18632 .1269 .0647 .0799 .0995 .2053 .1694j

.1332 .0876 .0909 .1324 .1885 .1390-
For the split-plot analysis, (c-I), the data is .2668 .2652 .1889 .1003 .0372 I
analyzed using regression and the full model S .4014 .3619 .2672 .1570

=Ij+T+a P P +e hr .4997 .4492 .3560
Yijk + I j(i) + k ik ijk e . 6499 "5340
i = 1,2; j = 1,2 .... 9 and k = 1,2 .... 7, i is symmetric .5511

the treatment effect, Sj(i) is the subject and the Geisser-Greenhouse correction is

effect within the i treatment group, P is the .4243652 . Thus the F = 3.0014 is compared
k to the critical values of an F with degrees of

period effect, TPik is the interaction between freedom E.5 , c98 or 2,42 to the nearest

treatment anid period and e and S are integer value.
-j j(i)

random components. For the successive difference analysis (c-3)
the F statistic is calculated using a similar

The regression is done by 9tacking the observa- procedure as described for the split-plot ana-
tion vectors on each subject and Lhe design mat- lysis with the full model consisting of twelve
rix X consist of elements X(t,m) defined as A parameters, six for each treatment group, and
follows: a restricted model consisting of only o,e set of

........................................................
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six Aparameters for both groups. Using the

complete coroiiary sinus potassium data the IF
vector of difference , the design matrix, r6.
X , parameter vector, A ; and restricted design

matrix, XR , and corresponding parameters -R

, vectors are given below.

3.1-3.8 o0 a 00oo A' ooo00i

3.-. ooool01o00o00oo 0oo(o 0goal0123

3.6-3.6 0 0 0 1 0 0 0 0 0 a 0 U 0 a a a 0 0

3.6-4.1 a a 00a 0a 0 00 a a 0 1 00 0

4.1-4.0 0 1 0 0 0 0 a 0 0 0 0 0 4"5 0-"

4.0-4.0 1 0 0 aUu 00 0 05 0 0 
0 

0 0 -A 2

5.2-5.0 0 0 0 0 0 1 0 0 0 0 0 A A
6,7 2 3

A(2)I
1 2 ~ 3A 4

3.-3. X 0 10 0 0 0 0 0 0 0 0 2 0 1 0 
0  
a A3.a-3. a a a a aa a aa i a (2) aaaa a

% A
45

3.0-3.2 a a a a a U a a a a a

S. . (2)
6,17 .6x1

4.2-3.6 0 U 0 0 U U 0 1 0 a a 12xl a I U a 0
3 .6-3.6 .-aaa ia'aai aa

3.6-3.5 a a a a a a a a a a a a a a a a

SlUxI 1U8x12 108x6

2
I hen F (S5RF - SSR )/6/MSE = (5.8655 -3.4372) 1 29.9141422 and the test statistic is

, I. 5 - 5.8655)/96 = 2.4615. This statistic N +N 2 11 •r-

F ~ 1 2 T 2 11__

, compared to the critical value of an F with (NI + N2 - 2)(p - I) (16)(6).

.legreeg of freedom 6, 96
(29.9141422) 3.4277 . This statistic is com-

for the -uccessi',e difference analysis using the pared to the critical value of the F with

(eisser-(;rpenhouse correction (c-4) the same F degrees of freedom 6, 11 . (See Morrison

• "tatistic is compiled but the degrees of freedom (1967), page 145.)
are adjusted by multiplying by

2 For the Hotelling's T-Square analysis on the

2p -l; 2(48) - .7934 data summarized in the estimated regression co-

-p2 -4p * 2 3(49) - 28 + 2 efficients (c-6) (80, 8i, 82 in the model
"'"~~~~~~ Y= 60 + Bit + 62t2 e h olwn r h

,he F is then cmparnd to the critical 2  + e) the following are the

value of ar F with deqees of freednm 5, 76 . estimated regression coefficients for each sub-
s. ject used in the analysis. ,-

For the notellinq's l-iquare analysis on the et n,._
data - the

I Y_
• ,~
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Control Treated (Group 4)

IFB 2
3.97143 .06190 -.02381 3.27143 .03333 -.00952

4.58571 -.44167 .07976 3.21429 .02143 .02143

4.42857 -.22738 .05833 3.00000 .69762 -.09524

3.55714 .54762 -.04524 3.45714 -.02738 .00119

3.54286 .82262 -.07738 3.44286 .32143 -.04286

1.48571 1.63095 -.18333 3.27143 .76905 -.07381

2.61429 .87381 -.08333 3.78571 .34643 -.05357

3.31429 .72381 -.06905 4.38571 -.32381 .05476 1
Since it is desired to test parallelism of the and the Geisser-Greenhouse correction is
response curves over time only .3254127. Thus F = 2.6146 is compared

2 to the critical value of an F with degrees

and 82 estimates are used. The I for of freedom 2,23
the data summarized in BI, 82 is 3.673376 and

For the split-plot analysis using the Geisser-
the test statistic is Greenhouse correction calculated from the

(N1 + N2 - P - 1) 2 smoothed estimate of the dispersion matrix
F T + - 2)p T 1.7219. (1-3), the smoothed estimated dispersion ma-F N1  N2  trix is needed. The dispersion matrix given

This statistic is compared to the critical value in (1-2) was not at least positive semi-defi-

of the F with degrees of freedom 2, 15 (See nite. Using the Schwertmsn and Allen (1979)
Morrison (1967), page 125). smoothing procedure to Find the "closest"

positive-semidefinite matrix to the original

_ For the split-plot analysis of the incomplete estimate, the smoothed estimated dispersion
emate tes mohdetmedisrin

., data (I-1) the same models are used as for the matrix is
complete data, but with the missing observations
omitted. The F statistic for testing no in-
teraction is

F = (SSR f - SSR r)/5/MSE = (1886.01889 - .

1883.57114)/5/(1899.5 - 1886.01889)/72 2.6146.

This statistic is compared to the critical value
for an F with degrees of freedom 5, 72

For the split-plot analysis for the incomplete
• .data adjusted with the Geisser-Greenhouse cor-

rection (1-2) the estimated dispersion matrix
for the incomplete data is:

.1802 .1804 -.0016 -.0307 .0133 .1356 .1288

.1917 .0997 .0079 .1902 .2676 .2524

.2778 .1510 .1519 -. 0055 .0481

5= .1675 .1185 -. 0416 .0103

.5333 .4516 .4998

.6448 .6013

Symnetric .5845

L ':. %

-i,. . . , .., :.-..,-.",-.-.-..., -,".... . -, - ', : -.",- -....i, ": --. -,- .. •-,, . ?- -i'."- ,--'i''-.", ','----U ,--



.1918065 .1654627 .0030270 -.0331534 .0176511 .1401976 .1242361 0

.2110937 .0936510 .0109829 .1849782 .2619820 .2576760

.2797611 .1500375 .1534341 -.0038301 .0466650

msSsm .1680153 .1175633 -•0425321 .0112487

.5354160 .4537057 .4972162

.6469337 .5988344

Symmetric .5880248

and the Geiser-treenhouse correction is
E = .3468859 . Thus the F = 2.6146 is com-
pared to the critical value of an F with
degrees of freedom 2,25.

For the successive difference analysis of
incomplete data (1-4) the same procedure as
described in (c-3) is used. For the incomplete
coronary sinus potassium data the vector of
differences, .d the design matrix, X ; the

parameter vector, A ; the restricted design

matrix, XR ; and the corresponding parameter

vector, A are given below.

3.1-3.8 0 0 0 0 0 1 0 0 0 0 0 0 6
1 )  

0 0 0 0 0 1
1 2

3.8-3.6 0 0 0 0 1 0 0 0 0 0 0 0 A
1
) 0 0 0 0 1 0

2 A3
3.6-4.0 1 1 1 0 0 0 0 G U U U I 1 1 00

5.2-5.0 0 0 0 0 0 1 0 0 0 0 0 0 3 4 0 0 0 0 0 1

5.0-4.8 0 0 0 0 1 0 0 0 0 0 0 0 4 5 0 0 0 0 1 0

4.8-3.7 0 1 1 0 U 0 0 0 0 0 0 A
1  

0 0 1 1 0 0

3.7-4.2 1 1 0 0 0 0 0 0 0 0 0 (|) 1 1 0 0 0 0 1 A 2
6
A 7

5.8-4.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 04A

A 2 3
1 2

Yd 4.4-4.6 ,X= 0 1 00 0 00 00 00 U A (~2 ) X 0 1 0 0 00 Af A
2 3 3 4

4.6-4.6 1 0 U U U 0 0 a 0 0 0 0 (2) 1 00 0 0 0 -
3.2-3.0 0 0 0 0 0 0 0 0 1 1 ( 0 0 0 0 1 1 4 5

3.0-3.5 0 0 0 0 0 00 0 1 1 a 0 4A 5 0 0 1 1 0 0 A

3.5-3.5 0 0 0 0 U 0 0 0 0 0 0 0 0 1 0 0 0 0
5 6

A
4.2-3.6 0 0 0 0 0 0 0 0 1 1 1 0 (2) 0 0 1 1 1 0 6 7L 62x A32 12 123.6-3.6 0 0 0 0 a 0 0 1 0 0 0 0 0 1 0 0 0 0

L3.6-3.j 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6x

82xl 82 x 12 |2xI 82x6 . 7-
r i

ra°

... ~ ,7.~. . * .... . ~.n.* -~ A .*k'V
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Then F (SSRf - SSR )/6/MSE (5.0244 - 2.9624)/ Treated (Group 4) (continued)
r

6/(14.5356/70) 1.6374. This statistic is co
m
- BO 12

pared to the critical value of an F with deg-
rees of freedom 6, 70. 3.09143 .85071 -.08214

For the successive difference analysis using the

Geisser-Greenhousae correction (1-5) the correc- 4.57000 -.48250 .08036

tion factor is e 2(p 2_)/(p 2
4
p + 2) with 3.11429 .24881 .00595

p = 7, E = .7934 and the F statistic calculated
in (1-4), F 1.6374 is compared to the critical Since it is desired to test parallelism of the
value of an F with degrees of freedom 6 • response curves over time only 1 and B2 esti--

- 70 - c or 5, 56 to the nearest integer. r. c

mates are used. The T
2  

for the data summar-
For the successive difference analysis using the ized in BIP 82 is 3.5279527 and the test sta- .

* Geisser-Greenhouse correction based on the aver-
age number of responses per experimental unit tistic is F = (N1 + N2 - p - I)T2lOO ) 2_-1' )"
(1-6) P =- 5.56 and c =2/(5.56 131 (N1 + N2 -

2
)p 3.5279527 = 1.6537.

182162
[3(5.56)

2 
- 4(5.56) + 2) = .8252. The F :1.6374 This statistic is compared to the critical value

is compared to the critical value of an F with of an F with degrees of freedom 2, 15.
degrees of freedom 5, 58.

The analysis procedures (I-8), (1-9), (I-1O),
For the Hotelling's T-square analysis on the and (1-11) all use estimates for any missing
data summarized in the estimated regression data based on the regression
coefficients (1-7)(00, B1 , a2  in the model + R + Rthat particular subject.

2 + 0  1 for
y = B0 + B1t + B2 t + e) the following are the In describing (1-8) the estimates for B0 , B1,

estimated regression coefficients for each sub- B2 for each subject were given. These estimates
ject used in the analysis based on the incom- 2  r s c e n e i
plete data set. for B0 , B1 , B2 for each subject are used to

estimate any missing values for that subject.
Control The following is the incomplete data with

S1  82 estimates for any missing observation.

3.85721 .16874 -.03725

4.23614 -.21871 .05442

5.86000 -1.14571 -. 18511

3.64000 .54000 -.05000

3.20000 1.00000 -.10000

1.48571 1.63095 -.18333

2.61429 .87381 -.08333

3.31429 .72381 -.06905

* 4.52857 -.06905 .03810

Treated (Group 4)

B0  1 82
4.28769 -.42977 .03857

3.17403 .04503 .02127

3.06857 .68619 -.09524 ,. ,

3.41429 .01071 -.00357

3.21571 .49179 -.06179

*1

... ... ... ... ... ... ... '.*.-' ... .. • o•*_



CONTROL

Time Period

13 4 5 6 7

1 4.0 4.0456763 4.0281596 3.9361419 3.6 3.8 3.1

2 4.2 4.0164179 3.7 4.2320896 4.8 5.0 5.2

3 4.9000000 4.2 4.3 4.3 4.5 5.8 6.9400000

4 4.2 4.5200000 4.6 5.0000000 5.3 5.0800000 4.9
5 4.1000000 4.8000000 5.3 5.6 5.7000000 5.6000000 5.3 .:

6 3.1 3.6 4.9 5.2 5.3 4.2 4.1

7 3.7 3.9 3.9 4.8 5.2 5.4 4.2

8 4.3 4.2 4.4 5.2 5.6 5.4 4.7
9 4.6 4.6 4.4 4.6 5.4 5.9 5.6 --

TREATED (Group 4)

1 3.8964824 3.5 3.5 3.1856784 3.0 3.0974874 3.2 '

2 3.3 3.2 3.6 3.69447.51 3.9309392 4.2 4. 5314917""

3 3.5 4.0600000 4.7 4.3 3.9 3.4 3.5

4 3.4 3.4 3.5 3.400000 3.4 3.2 3.4

5 3.7 3.8 4.2 4.3 4.1300000 3.8 3.7

6 3.8600000 4.6 4.8 4.9 5.4 5.6 4.8 -

7 4.2 4.4100000 4.5 4.7 3.9 3.8 3.7

8 4.1 4.1 3.7 4.0 4.1 4.6 5.1300000

3.5 3.6 3.6 4.2 4.8 4.9 5.0

The .plit-plot analysis with estimates used for degrees of freedom 2, 28.
the missing data (1-8)9 is done exactly as if
the data were complete and degrees of freedom The success difference analysis using the data
for error is adjusted subtracting a degree of with estimates for the missing observations
freedom for each missing value. The test sta- (1-10) is performed as described for the com-
tistic for parallelism is F = (SSRF - SSRr)/ plete data successive difference analysis (C-3).

The F statistic is F = (SSR - SSR )/6/MSE =
(df * MSE) = (2395.87488 - 2393.54174)/ (3.3419-2.1363)/6(20.8518-3.3419)/70 1 .8033.
5(2419.06587 - 2395.87488)/72 1.4487. This The Geisser-Greenhouse correction is C
statistic is compared to the critical value ofp 2 2(48)
F with degrees of freedom 5, 72. 

2 (p- l)/(3p 2 - 
4p + 2) 7934- 28 + 2 .

The F statistic F = .8033 is compared to the
For the split-plot analysis with estimates used critical value of the F with degrees of free-
for the missing data adjusted for the Geisser- dam 5, 56.
Greenhouse correction (1-9) the dispersion matrix

for the filled in data is needed. The dispersion The Hotelling's T-square analysis using the data
matrix is with estimates for the missing observations

(I-l) is performed as described for the complete
.1823 .1113 .0011 -.0149 -.0152 .1388 .2098 data Hotelling's T-square analysis (C-5). The

.1828 .1464 .1426 .1338 .1701 .1256 T 9.0751902 and the test statistics is
.2698 .2380 .1844 .0798 .0239 N + N - P 2 I

.32 .19106 2 p T2 
= (9.75102)VQS= .3082 .3125 .1991 UB68 (N1 + N2 - 2)(p - 1) - (16)(6)(9.0751902)

.4649 .4073 .2900 1.0399. This statistic is compared to the 
=

critical value of the F with degrees of free-
.6054 .5920 dom 6, 11.

.8649
- IV. The Monte Carlo Study

and the Geisser-Greenhouse correction factor

= .3945405. The F statistic F 1.4487 is To compare the various analysis procedures des-
compared to the critical value of an F with cribed in Section IT 500 simulations of 14 dis-

. ...
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persion structures with sample sizes of n 10
and n = 20 (either 5 or 10 in each of two treat- T-square using the estimated regression coeffi-
ment groups). The dispersion structures, des- cients on each subject seemed to be the more
cribed in tables 1 and 2 used in the simulation satisfactory both with respect to significance ,'.
represent a variety of structures with either levels and power than using Hotelling's T-square
four or eight multivariate responses and differ- leve ano tan u g t n T a
ing patterns. Two data sets were generated, one othorgnlda
where both treatment groups have the same growth For the simulation of incomplete growth curve
curve, to measure significance level and the data the mst satisfactory of the procedures

second set where the growth curves for the two compared was the Split-Plot Analysis using the "

groups are different in order to compare power Ceisser-Greenhouse correction factor calculated
of the testing procedures.* from the smoothed estimated dispersion matrix.

This procedure had consistently satisfactory
Uniform random variables were generated using simulated significance levels and relatively
the subroutine RAND in the Control Data Corpor- large power.

*ation FORTRAN LIBRARY ROUTINES. Generation of
the normal random variables was accomplished by While both the split-plot analysis with the
Box and Mueller (1958) transformation. To Geisser-Creenhouse correction calculated on the
achieve the desired dispersion structures given smoothed estimated dispersion matrix (1-3) and
in tables 1 and 2, the Cholesky factorization of the Hotelling's I-square analysis on the data
the dispersion matrix, E, was used. That is, if summarized in the estimated regression coeffi-
T'T = E where T is a p x p upper triangular cients (1-7) have satisfactory significance
matrix then the vector of random components for levels for both sample sizes and both numbers
each multivariate response vector is Te where e of multivariate responses the former had greater
are the independent normal variables generated power. Since the uncorrected split plot analy-
using the Box-Mueller (1958) procedures. sis (-I) generally had much larger simulated

significance levels than the nominal value, its -
The proportion of non positive semidefinite esti- use is questionable. The split-plot using the
mated dispersion matrices encountered in the Geisser-Greenhouse correction on the estimated
simulations is tabulated in Table 3 and the dispersion matrix before smoothing (1-2) had
simulated significance level and power are pre- much smaller significance levels than the nomi-
sented in tables 4 through table 9. nal values and was also substantially less

V. Conclusions powerful than the same procedure using the -V.Cnlsossmoothed dispersion matrix. -

This Monte Carlo study using a variety of multi- The successive difference procedures (1-4, 1-5
variate dispersion structures suggest that for 1-6) developed for data observed at random
complete growth curve data the preferred analy- times, again did not adapt well to data at
sis procedure of those compared is either the fixed times. These procedures had significance
split-plot with the Geisser-Greenhouse correc- levels larger than the nominal values especially
tion or Hotelling's T-square using the estimated for eight multivariate responses or larger sam-
regression coefficients on each subject as the
data. The split-plot analysis with the Geisser- pie sizes.

Greenhouse correction seems to be more satisfac- The test procedures using the data with esti-
tory for small numbers of multivariate responses mates for the missing observations (I-8, 1-9,
since it had better power. However the I-square 1-10, I-l1) tended to have much smaller simu-
was more satisfactory with respect to signifi- lated significance levels than the nominal
cance level for eight multivariate responses and values. Since the split-plot analysis using
should be preferred in this case. The Geisser- the %eisser-Creenhouse correction after smooth-
Greenhouse correction brought the inflated sim- ierf

ulatd sgniicace evel fo th spit-loLing (1-3) generally was more powerful than any
ulated significance levels for the split-plot of these procedures, it seems to be more appro-
analysis closer to the nominal values but still priate for the incomplete data analysis than
with eight multivariate responses the simulated iter the Ime data analysis than
significance levels tended to be somewhat larger e p sI 9 1l
than the nominal values. The successive differ-
ence procedures which were developed for the
analysis of data observed at random times did
not adapt well to the complete data, qenerally
havinq simulated significance levels larger
than normiral level. The two multivariate
procedures using Hotelling's T-square were
satisfactory with respect to the simulated -
significance levels but less powerful than
the split-plot analyses. The Hotelling's

The growth curves used in this study are based
on the real qrowth curve of approximately 75
hulls at the University of Kentucky Agricultural
Experiment Station.

EL
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d TABLE I4.

Dispersion structures for four multivariste response simulations IF

11 22 33 044 012 013 014 023 024 034

(P12r ( ) (014 (023) (P24) (P34)

1.0 1.0 1.0 1.0 .8 .8 .8 .8 .8 .8
4A

(.8) (.8) (.8) (.8) (.8) (.8)

1.0 1.0 1.0 1.0 .2 .2 .2 .2 .2 .2
48

(.2) (.2) (.2) (.2) (.2) (2

1.0 1.0 1.0 1.0 .8 .6 .4 .8 .6 .8
4C(.) (.6) (.4) (.8) (.6) (.8)

4 1.0 1.0 1.0 1.0 1.13137 1.38564 1.6 1.95959 2.26274 2.77128

(.8) (.8) (.8) (.8) (.8) (.8)

1.0 2.0 3.0 4.0 .28284 .34641 .4 .48990 .56569 .69282
42(.2) (.2) (.2) (.2) (.2)

1.0 2.0 3.0 4.0 1.13137 1.03923 .8 1.95959 1.69706 2.77128
4F

(.8) (.6) (.4) (.8) (.6) (.8)

1.0 2.0 3.0 4.0 1.27279 1.40296 1.458 2.20454 2.29103 3.11769
4G

(.9) (.81) (.729) (.9) (.81) (.9)

N;:
"2i

.°

. ... . ,-

... . . . . . . . .. . . . . . . .. . . . . . .



TABLE II
Dispersion structures for eight multivariate responses simulations

STRUC- 0I 022 033 044 055 066 07 088 012 -
TURE (Pl2)"

1.0 1.0 1.0 1.0 1.0 1.o 1.0 1.0 .9
BA C.9)

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .2
. 88 .2)

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .B
BC .8)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1.13137
8D .8)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 .28284
BE .2)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1.13137
BF (.8) -

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1.27279
8G .9)

0 3 014 0 15 a 16 a 17 018 0 23 024 025

(P13) (014) (015) (016) (017) (018) (P23) (P24) (P25) - :

.9 .9 .9 .9 .9 .9 .9 .9 .9
BA ( .9) ( .9) (.9) (.9) (.9) (.9) (.9) (.9) (.9)

.2 .2 .2 .2 .2 .2 .2 .2 .2
88 (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)

.6) .4 .2 . -.2 -.4 .8 .6 .4
8C (.6) (.4) (.2) (0) (-.2) (-.4) (.8) (.6) (.4)

1.38654 1.6 1.78BB5 1.95959 2.1166 2.26274 1.95959 2.26274 2.52982
80 (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8)

.34641 .4 .44721 .48990 .52915 .56569 .48990 .56569 .63246
BE (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2 (.2)

1.03923 .8 .44721 0. -.52915 -1.13137 1.95959 1.69706 1.26491
OF (.6) (.4) (.2) (0.) (-.2) (-.4) (.8) (.6) (.4)

1.40296 1.458 1.46708 1.44642 1.35833 1.21142 2.20454 2.29103 2.3053
BG (.81) (.729) (.6561) (.5905) (.5314) (.4283) (.9) (.81) (.729)

026 07 °z8 034 035 036 037 038 045

(26) (P2 7 ) (P28) (034) (035) (036) (037) (38) (045)

.9 .9 .9 .9 .9 .9 .9 .9 .9
BA (.9) (.9) (.9) (.9) (.9) (.9) (.9) (.9) (.9)

.2 .2 .2 .2 .2 .2 .2 .2 .2
8B (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)

.2 0. -.2 .8 .6 .4 .2 0. .8
8C (.2) (0.) (-.2) (.8) (.6) (.4) (.2) (0.) (.8)

2.77128 2.99333 3.2 2.77128 3.09839 3.39411 3.66606 3.91918 3.57771
8D (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8) r

.69282 .74833 .8 .69282 .77460 .84853 .91652 .97980 .89443

BE (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)

.69282 0. -.8 2.77128 2.32379 1.69706 .91652 0. 3.57771 " -.
OF (.2) (0.) (-.2) (.8) (.6) (.4) (.2) (0.) (.8)

2.27280 2.20945 2.1256 3.11769 3.13712 3.09289 3.00663 2.89285 4.02492 N
BG (.6561) (.5905) (.5314) (.9) (.81) (.729) (.6561) (.5905) (.9) A .A

%, %

* " . .. . . .... . . ... . . . . ..' ."' . •", , " ,"-i"' •"-" "' "'," " - ",.

je..-._._ '_- -_ 
"
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TABLE II (continued)

STRUC- 046 o47 a48 '56 057 "58 a67 a68 a78 , *

TURE
(P46) (P47) (P48) (056) (P57) (P58) (P67) (P68) (P7B)

.9 .9 .9 .9 .9 .9 .9 .9 .9
BA (.9) (.9) (.9) (.9) (.9) (.9) (.9) (.9) (.9)

.2 .2 .2 .2 .2 .2 .2 .2 .28B (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)

.6 .4 .2 .8 .6 .4 .8 .6 .8
BC (.6) (.4) (.2) (.8) (.6) (.4) (.8) (.6) (.8)

3.91918 4.2332 4.52548 4.38178 4.73286 5.05964 5.18459 5.54256 5.98865
OD (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8) (.8)

.9798 1.0583 1.13137 1.09545 1.18322 1.26491 1.29615 1.38564 1.49666

BE (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)

2.93939 2.1166 1.13137 4.38178 3.54965 2.52982 5.18459 4.15692 5.98665
BF (.2) (.4) (.2) (.8) (.6) (.4) (.8) (.6) (.8)

3.96817 3.85751 3.71146 4.9295 4.79202 4.6106 5.83267 6.61184 6.73498
BG (.81) (.729) (.6561) (.9) (.81) (.729) (.9) (.81) (.9)

-+".

"r +

..... .... ..-..-......-. ... .... ....
.... .... ... .... ... .... ... .... .-..... ...



TABLE III

Proportion of Estimated Dispersion ~'.
Matrices from the incomplete data that were NOT positive definite.

r\'.
Sample
size 4A 48 4C 40 4L 4F 4G BA 80 BC 80 BE BE BG

n 10 .930 .040 .456 .578 .040 .448 .692 .852 .008 .206 .570 .006 .218 .556

n 20 .702 .000 .184 1.76 .000 .120 .434 .596 .000 .004 .042 .000 .002 .106

TABLE IVl

MONTE CARLO SIMULATION OF SIGNIFICANCE LEVEL FOR INCOMPLETE DATA

SAMPLE SIZE N 10

Dispersioni Structure

Test Normal a 4A 4B 4C 40 4E 4F 4G BA 88 8C 80 BE OF 8G -

.10 .088 .076 .116 .110 .110 .126 .122 .092 .094 .216 .162 .108 .202 .220

1-1 .05 .026 .044 .068 .060 .048 .084 .076 .038 .038 .142 .098 .052 .166 .158

.01 .008 .010 .020 .020 .012 .032 .034 .008 .006 .060 .036 .018 .068 .084 -

.10 .018 .044 .058 .040 .048 .066 .060 .008 .020 .072 .032 .032 .080 .082

1-2 .05 .008 .020 .018 .014 .022 .024 .024 .000 .004 .022 .002 .008 .028 .022

.01 .000 .002 .000 .000 .004 .002 .000 .000 .000 .004 .000 .002 .002 .002

.10 .030 .052 .070 .056 .056 .076 .076 .020 .028 .100 .062 .044 .114 .118

1-3 .05 .008 .022 .028 .022 .022 .034 .036 .006 .006 .052 .024 .012 .050 .064

.01 .000 .002 .002 .006 .006 .006 .006 .000 .000 .006 .002 .002 .010 .012

.10 .092 .100 .096 .126 .120 .126 .114 .156 .148 .118 .202 .214 .136 .148

1-4 .05 .056 .050 .046 .050 .056 .068 .070 .106 .114 .066 .104 .114 .074 .084

.01 .012 .012 .010 .012 .018 .014 .014 .026 .028 .010 .036 .040 .022 .028

.10 .092 .098 .092 .124 .118 .124 .114 .140 .136 .102 .178 .186 .122 .112

1-5 .05 .052 .050 .044 .050 .054 .064 .066 .078 .084 .052 .086 .088 .068 .072

.01 .012 .012 .008 .012 .018 .014 .012 .012 .016 .004 .030 .034 .014 .024

.10 .092 .100 .096 .126 .120 .126 .114 .140 .138 .106 .182 .190 .126 .118

1-6 .05 .056 .050 .046 .050 .056 .068 .070 .080 .088 .052 .088 .090 .068 .072

.01 .012 .012 .010 .012 .018 .014 .014 .012 .016 .004 .032 .034 .014 .024

.10 .068 .066 .077 .070 .068 .082 .072 .082 .102 .098 .104 .098 .098 .096

1-7 .05 .028 .036 .030 .036 .032 .032 .040 .034 .046 .048 .052 .054 .056 .048

.01 .002 .004 .004 .004 .004 .000 .004 .004 .014 .010 .006 .012 .012 .012

.10 .038 .032 .060 .0144 .046 .060 .068 .016 .012 .086 .054 .024 .092 .098

1-8 .015 .012 .020 .0130 .030 014 .034 .036 .008 .0014 .054 .024 .012 .048 .062

.01 .000 .000 .004 .004 .000 .006 .010 .000 .000 .018 .008 .004 .022 .024

.10 .014 .018 .028 .030 .016 .036 .034 .008 .0012 .028 .018 .010 .024 .038

1-9 .05 .000 .000 .010 .010 .002 .014 .016 .000 .000 .008 .004 .002 .012 .010

.01 .1000 .0010 .0014 .000 .000 .000 .000 .000 .00(0 .002 .00)1 .000 .002 .0102

. .. . . -
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TABLE IV

(cont inued)

.10 .034 .030 .038 .036 .040 .050 .044 .014 .014 .010 .020 .024 .022 .020

i-ia .05 .008 .010 .018 .014 .010 .024 .022 .006 .008 .002 .006 .004 .008 .010J

.01 .000 .000 .000 .002 .002 .000 .000 .000 .000 .000 .002 .002 .002 .002

.10 .068 .068 .068 .074 .066 .062 .062 .090 .100 .074 .082 .084 .094 .100

i-il .05 .030 .030 .032 .030 .028 .028 .032 .052 .044 .034 .038 .048 .052 .046

.01 .006 .004 .010 .002 .002 .006 .006 .014 .008 .002 .006 .012 .010 .006

TABLE V

MONTE CARLO SIMULATION OF SIGNIFICANCE LEVEL FOR INCOMPLETE DATA

SAMPLE SIZE N 20 Dispersion Structure

TEST Nominial a 4A 48 4C 40 4E 4F 4G 8A 8B 8C 8D 8E 8F 80

.10 .128 .122 .116 .118 .112 .112 .120 .120 .102 .218 .168 .136 .210 .222

-I .05 .062 .064 .062 .066 .062 .068 .080 .062 .046 .152 .112 .078 .154 .170

.01 .010 .020 .016 .020 .012 .020 .030 .016 .014 .080 .036 .032 .076 .088

.10 .050 .108 .064 .066 .082 .080 .068 .022 .064 .110 .084 .086 .110 .118

1-2 .05 .006 .042 .022 .026 .046 .034 .030 .002 .026 .054 .024 .036 .062 .036 .

.01 .000 .002 .004 .006 .002 .002 .002 .000 .004 .014 .004 .006 .016 .008

.10 .064 .108 .068 .080 .082 .080 .082 .046 .066 .124 .102 .088 .128 .142

1-3 .05 .024 .042 .028 .032 .046 .038 .046 .022 .026 .074 .042 .038 .070 .076

.01 .000 .002 .008 .006 .002 .004 .006 .000 .004 .016 .008 .006 .020 .016

.10 .152 .162 .102 .136 .156 .106 .116 .196 .210 .132 .184 .204 .152 .162

1-4 .05 .096 .094 .054 .078 .098 .064 .072 .110 .118 .078 .120 .138 .074 .092

.01 .024 .026 .010 .020 .024 .014 .016 .044 .036 .022 .050 .046 .030 .024

.10 .152 .162 .102 .136 .156 .106 .116 .180 .174 .114 .172 .180 .128 .142

1-5 .05 .096 .092 .054 .074 .096 .064 .068 .092 .100 .062 .106 .120 .066 .078

.01 .024 .026 .008 .020 .024 .014 .016 .032 .024 .020 .034 .042 .024 .016

.10 .152 .162 .102 .136 .156 .106 .116 .182 .178 .116 .176 .182 .128 .148

1-6 .05 .096 .092 .054 .078 .098 .064 .072 .094 .10(1 .062 .108 .120 .066 .078

.01 .024 .026 .010 .020 .024 .014 .016 .032 .024 .020 .034 .042 .024 .016

.10 .102 .088 .106 .118 .098 .104 .112 .084 .078 .104 .106 .088 .108 .104

1-7 .05 .048 .048 .050 .062 .054 .052 .056 .034 .036 .056 .050 .036 .050 .048

.01 .006 .002 .012 .006 .008 .012 .010 .006 .000 .012 .012 .002 .014 .012

.10 .054 .058 .066 .066 .060 .074 .086 .026 .028 .094 .062 .044 .094 .114

1-8 .05 .022 .024 .032 .036 .028 .038 .060 .012 .010 .064 .028 .022 .066 .076

.01 .004 .004 .008 .008 .002 .004 .008 .004 .004 .034 .008 .002 .032 .028

.10 .034 .036 .034 .050 .038 .048 .064 .014 .012 .048 .024 .022 .054 .046

1-9 X05 .008 .010 .014 .018 .010 .016 .018 .008 .008 .022 .008 .002 .020 .024

.01 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .002 .000 .004 .004

.10 .056 .056 .068 .060 .052 .060 .064 .032 .026 .036 .056 .058 .044 .048

1-10 .05 .030 .028 .026 .034 .030 .028 .032 .012 .012 .024 .018 .022 .028 .026 ~
.01 .004 .004 .004 .006 .004 .004 .008 .000 .002 .006 .002 .002 .010 .006

.10 .088 .092 .094 .102 .084 .106 .110 .090 .078 .088 .102 .078 .084 .104



N 'ABLE V

(continued) 1
1-11 .05 .042 .036 .052 .062 .042 .056 .048 .038 .036 .048 .044 .034 .058 .060

.01 .006 .004 .012 -0J8 .008 .006 .OC43 .006 .006 .014 .010 .008 .016 .012

TABLE VI

MONTE CARLU SIMULATION OF POWER FOR INCOMPLETE DATA

SAMPLE SIZE N =10

TEST Nominal ax 4A 48 4C 40 4E 4F 4G 8A 88 8C 80 BE BF BG

.10 !.00 .886 .988 .922 .508 .764 .922 1.00 .982 .926 .822 .452 .492 .654

1-1 .05 -,.00 .182 .978 .856 .398 .706 .872 1.00 .958 .892 .756 .352 .430 .604

.01 1.00 .510 .922 .650 .188 .456 .716 1.00 .848 .820 .582 .170 .304 .476

l1j 1.00 .828 .968 .818 .418 .648 .846 1.00 .920 .826 .568 .254 .302 .458

1-2 .05 1.00 .652 .904 .600 .252 .448 .674 1.00 .768 .682 .324 .102 .152 .310

.01 .994 .252 .516 .186 .076 .140 .264 1.00 .304 .282 .052 .012 .026 .062

.10 1.00 .838 .974 .850 .432 .700 .860 1.00 .952 .846 .700 .304 .368 .536

13 .05 1.00 .674 .932 .676 .266 .504 .734 1.00 .858 .760 .498 .152 .244 .426

.01 .994 .294 .666 .314 .090 .200 .368 1.00 .480 .488 .202 .020 O086 .216

.10 1.00 .668 .966 .800 .360 .698 .892 1.00 .494 .768 .440 .258 .314 .466

1-4 .05 1.00 .496 .954 .670 .240 .584 .822 1.00 .314 .670 .304 .160 .210 .354

.01 .998 .198 .838 .412 .098 .328 .626 .976 .114 .478 .122 .054 .104 .188

.10 1.00 .664 .966 .796 .356 .696 .892 1.00 .438 .746 .404 .232 .280 .438

1-5 .05 1.00 .488 .954 .662 .238 .582 .816 .998 .252 .616 .262 .126 .180 .310

.01 .998 .186 .830 .394 .090 .326 .612 .964 .082 .404 .082 .038 .078 .144

.10 1.00 .668 .966 .800 .360 .698 .892 1.00 .440 .748 .410 .236 .280 .442

1-6 .05 1.00 .496 .954 .670 .240 .584 .822 .998 .258 .620 .262 .128 .188 .312

.01 .998 .198 .838 .412 .098 .328 .626 .968 .082 .412 .086 .040 .082 .156

.10 .992 .486 .852 .576 .260 .472 .704 1.00 .894 .748 .570 .332 .242 .418

1-7 .05 .982 .336 .742 .416 .152 .336 .522 1.00 .796 .590 .420 .218 .160 .258

.01 .876 .124 .386 .170 .050 .122 .236 .998 .498 .280 .168 .056 .044 .092

.10 .992 .436 .908 .584 .198 .562 .784 1.00 .834 .816 .644 .256 .324 .522

1-8 .05 .988 .332 .848 .462 .132 .422 .690 1.00 .752 .762 .528 .160 .246 .440

.01 .948 .144 .690 .266 .064 .228 .454 1.00 .550 .628 .336 .074 .146 .314 -

.10 .984 .352 .836 .468 .150 .422 .660 1.00 .722 .658 .440 .136 .168 .338

1-9 .05 .956 .196 .728 .308 .082 .266 .484 1.00 .548 .500 .294 .066 .086 .182

.01 .790 .058 .372 .108 .012 .098 .204 .990 .200 .178 .096 .004 .014 .048

.10 .970 .260 .830 .380 .106 .404 .680 .976 .112 .564 .116 .03B .124 .204

1-10 .05 .934 .140 .734 .274 .064 .284 .532 .960 .056 .460 .050 .012 .078 .144

.01 .786 .040 .478 .116 .016 .136 .286 .834 .010 .216 .010 .002 .014 .056

.10 .974 .354 .744 .446 .196 .370 .538 .764 .296 .192 .146 .128 .104 .126

1 1 .05 .922 .226 .576 .288 .108 .214 .364 .524 .162 .096 .064 .072 .052 .068

.01 .682 .080 .248 .090 .020 .070 .146 .162 .032 .010 .018 .014 .014 .018



TABLE VIII MONTE CARLO SIMULATION OF POWER FOR INCOMPLETE DATA
SAMPLE SIZE N 20

TEST Nominal a 4A 48 4C 4Q 4E 4F AG 8A 8B BC 8D BE OF BC

.10 1.00 .998 1.00 1.00 .820 .970 .998 1.00 1.00 1.00 .984 .780 .770 .922

1-1 .05 1.00 .996 1.00 .996 .736 .936 .994 1.00 1.00 1.00 .978 .676 .732 .B98I.01 1.00 .972 1.00 .970 .498 .858 .978 1.00 1.00 .998 .926 .444 .568 .834
.10 1.00 .996 1.00 .996 .796 .940 .996 1.00 1.00 1.00 .958 .678 .660 .866

1-2 .05 1.00 .994 1.00 .972 .678 .862 .974 1.00 1.00 .986 .894 .530 .480 .752

.01 1.00 .946 .994 .854 .374 .624 .850 1.00 .998 .898 .624 .244 .240 .432

.10 1.00 .996 1.00 .996 .796 .944 .996 1.00 1.00 1.00 .966 .682 .676 .876

1-3 .05 1.00 .994 1.00 .984 .678 .876 .980 1.00 .100 .988 .918 .536 .510 .786

.01 1.00 .948 .994 .896 .374 .680 .898 1.00 .998 .928 .738 .248 .276 .552

.10 1.00 .964 1.00 .984 .598 .930 .998 1.00 .718 .980 .594 .296 .526 .736

1-4 .05 1.00 .918 1.00 .952 .458 .888 .982 1.00 .580 .958 .470 .206 .404 .634

.01 1.00 .694 1.00 .842 .208 .748 .950 1.00 .292 .882 .256 .098 .226 .450

.10 1.00 .964 1.00 .984 .598 .930 .998 1.00 .686 .976 .554 .270 .512 .702 r*

1-5 .05 1.00 .918 1.00 .952 .452 .886 .982 1.00 .536 .956 .424 .180 .358 .604

6k .01 1.00 .686 1.00 .842 .206 .742 .950 1.00 .248 .850 .192 .070 .172 .398

.10 1.00 .964 1.00 .984 .598 .930 .998 1.00 .692 .978 .556 .274 .512 .708

1-6 .05 1.00 .918 1.00 .952 .454 .888 .982 1.00 .538 .958 .428 .186 .360 .604

.10 1.00 .812 .998 .884 .470 .826 .968 1.00 .998 .982 .916 .702 .522 .764I1-7 .05 1.00 .700 .994 .804 .332 .738 .930 1.00 .992 .960 .846 .564 .360 .648

.01 1.00 .448 .940 .590 .152 .466 .770 1.00 .972 .858 .638 .290 .150 .356

.10 1.00 .772 1.00 .884 .430 .842 .972 1.00 .998 .992 .928 .532 .630 .850

1-8 .05 1.00 .678 .994 .818 .306 .780 .960 1.00 .988 .984 .898 .434 .558 .808

.01 1.00 .486 .982 .646 .150 .612 .872 1.00 .966 .972 .788 .258 .422 .678

.10 1.00 .728 .996 .848 .360 .798 .954 1.00 .984 .976 .880 .440 .490 .738

1-9 .05 1.00 .586 .986 .748 .240 .678 .906 1.00 .972 .938 .794 .318 .304 .580

.01 1.00 .332 .918 .464 .082 .392 .710 1.00 .870 .764 .556 .100 .102 .292

.10 1.00 .574 .996 .750 .258 .762 .948 1.00 .424 .936 .358 .098 .334 .566

1-10 .05 1.00 .452 .986 .630 .156 .662 .902 1.00 .296 .908 .242 .068 .204 .448I.01 .998 .218 .928 .374 .042 .418 .778 1.00 .092 .786 .094 .010 .086 .258
.10 1.00 .712 .990 .834 .384 .760 .938 1.00 .934 .848 .658 .392 .272 .468

1-11 .05 1.00 .596 .972 .722 .266 .640 .874 1.00 .844 .710 .512 .258 .156 .314

.01 .998 .332 .884 .446 .086 .356 .646 1.00 .640 .386 .230 .062 .034 .110



TABLE VIII .

MONTE CARLO SIMULATION OF POWER FOR COMPLETE DATA

DISPERSION STRUCTURE

TEST N Nominal a 4A 48 4C 4Q 4E 4F 4G BA 8B 8C 8U) BE OF BG

10 .10 1.00 .978 .996 .982 .674 .882 .980 1.00 .998 .974 .898 .564 .564 .746

C-i 10 .05 1.00 .944 .992 .964 .53B .818 .962 1.00 .994 .954 .858 .446 .502 .710

10 .01 1.00 .830 .984 .874 .292 .640 .884 1.00 .974 .898 .726 .232 .370 .582

.10 .10 1.00 .966 .992 .974 .614 .826 .960 1.00 .992 .918 .848 .422 .428 .632

C-2 10 .05 1.00 .916 .986 .924 .440 .706 .908 1.00 .982 .852 .726 .264 .328 .500

10 .01 1.00 .698 .924 .740 .198 .426 .682 1.00 .840 .626 .452 .707 .150 .296

10 .10 1.00 .706 .996 .846 .314 .768 .958 1.00 .278 .792 .232 .128 .240 .426

C-3 10 .05 1.00 .522 .988 .722 .218 .668 .910 .996 .168 .696 .142 .088 .164 .284

10 .01 1.00 .258 .952 .428 .094 .402 .738 .958 .066 .462 .066 .044 .056 .132

10 .10 1.00 .704 .996 .846 .314 .768 .958 1.00 .238 .772 .212 .112 .214 .390

C-4 10 .05 1.00 .516 .986 .720 .212 .660 .906 .996 .152 .656 .118 .078 .146 .234

10 .01 1.00 .248 .946 .416 .092 .396 .732 .934 .042 .380 .048 .030 .042 .098

10 .10 1.00 .910 .972 .838 .520 .580 .790 .966 .4'1' .258 .220 .166 .128 .166

C-5 10 .05 1.00 .782 .888 .722 .338 .400 .656 .846 .226 .156 .108 .080 .072 .098

10 .01 1.00 .392 .566 .348 .110 .142 .300 .312 .062 .026 .028 .012 .020 .022

10 .10 1.00 .974 .994 .926 .616 .672 .896 1.00 .994 .848 .776 .530 .258 .444

C-6 10 .05 1.00 .906 .970 .838 .462 .546 .782 1.00 .984 .720 .606 .344 .148 .296

10 .01 1.00 .616 .758 .524 .180 .212 .446 1.00 .860 .352 .276 .124 .034 .098

20 .10 1.00 1.00 1.00 1.00 .914 .984 1.00 1.00 1.00 1.00 .996 .866 .818 .946

C-I 20 .05 1.00 1.00 1.00 1.00 .872 .978 1.00 1.00 1.00 .998 .984 .806 .768 .934

20 .01 1.00 .996 1.00 .998 .694 .930 .998 1.00 1.00 .998 .968 .594 .656 .890

20 .10 1.00 1.00 1.00 1.00 .902 .980 1.00 1.00 1.00 .998 .986 .834 .732 .920

C-2 20 .05 1.00 .998 1.00 1.00 .834 .946 1.00 1.00 1.00 .998 .970 .706 .626 .858

20 .01 1.00 .992 1.00 .994 .612 .866 .966 1.00 1.00 .976 .912 .410 .416 .692

20 .10 1.00 .980 1.00 .990 .562 .960 1.00 1.00 .536 .992 .454 .202 .474 .752

C-3 20 .05 1.00 .926 1.00 .974 .414 .940 .998 1.00 .392 .982 .326 .138 .356 .634

20 .01 1.00 .724 1.00 .880 .176 .824 .982 1.00 .180 .916 .156 .050 .172 .418

20 .10 1.00 .976 1.00 .990 .558 .960 1.00 1.00 .492 .990 .428 .192 .448 .734

C-4 20 .05 1.00 .926 1.00 .968 .414 .940 .998 1.00 .352 .974 .292 .118 .324 .600

20 .01 1.00 .722 1.00 .880 .172 .822 .982 1.00 .132 .896 .122 .038 .134 .364

20 .10 1.00 .998 1.00 1.00 .892 .918 .996 1.00 1.00 .936 .870 .608 .320 .542

C-5 20 .05 1.00 .998 .998 .992 .790 .856 .976 1.00 1.00 .852 .744 .406 .172 .362

20 .01 1.00 .974 .992 .926 .538 .618 .896 1.00 .972 .576 .384 .196 .058 .130

20 .10 1.00 1.00 1.00 1.00 .936 .956 1.00 1.00 1.00 .998 .986 .892 .564 .818

C-6 20 .05 1.00 .998 1.00 1.00 .878 .906 .994 1.00 1.00 .992 .964 .816 .412 .726

20 .01 1.00 .990 .994 .966 .642 .740 .952 1.00 1.00 .934 .816 .548 .162 .470



TABLE IX

MONTE CARLO SIMULATION OF SIGNIFICANCE LEVEL FOR COMPLETE DATA

DISPERSION STRUCTURE

TEST N Nominalca 4A 48 4C 4D 4E 4F 4G BA 88 BC 80 BE 8F 80IS

10 .10 .088 .104 .114 .130 .114 .132 .142 .096 .090 .236 .152 .098 .254 .254

C-i 10 .05 .046 .048 .072 .080 .064 .082 .088 .050 .032 .160 .094 .054 .178 .190

10 .01 .012 .012 .022 .014 .012 .026 .030 .004 .008 .088 .032 .014 .096 .116

to1 .10 .062 .068 .084 .106 .092 .094 .108 .052 .036 .132 .082 .056 .128 .152

C-2 10 .05 .032 .034 .040 .048 .040 .050 .050 .010 .014 .072 .032 .026 .074 .078

10 .01 .006 .006 .014 .006 .008 .012 .014 .000 .000 .022 .012 .004 .020 .016

10 .10 .092 .096 .100 .106 .116 .106 .122 .124 .122 .096 .126 .124 .102 .098

C-3 10 .05 .054 .052 .052 .058 .054 .054 .062 .086 .086 .050 .070 .074 .054 .062

10 .01 .012 .010 .014 .018 .018 .016 .010 .024 .026 .012 .034 .034 .022 .014

10 .10 .092 .094 .096 .106 .116 .106 .120 .104 .112 .080 .108 .110 .088 .090

C-4 10 .05 .052 .052 .050 .058 .054 .054 .062 .068 .072 .036 .066 .068 .054 .052

10 .01 .012 .008 .014 .018 .012 .016 .010 .012 .018 .008 .022 .028 .010 .006

10 .10 .094 .100 .092 .098 .092 .110 .112 .098 .092 .082 .102 .088 .104 .112

C-5 10 .05 .054 .052 .050 .048 .054 .056 .064 .038 .042 .034 .050 .048 .050 .044

10 .01 .008 .016 .014 .012 .010 .012 .012 .014 .008 .008 .006 .010 .014 .010

10 .10 .094 .088 .098 .092 .094 .106 .106 .094 .090 .092 .096 .082 .092 .102

C-6 10 .05 .048 .058 .048 .054 .050 .056 .062 .038 .036 .044 .040 .042 .038 .046

10 .01 .002 .008 .016 .008 .006 .014 .020 .012 .010 .008 .006 .004 .008 .014

20 .10 .100 .106 .126 .114 .108 .116 .126 .122 .114 .220 .166 .138 .226 .244

IC-I 20 .05 .050 .052 .074 .058 .058 .076 .086 .066 .060 .158 .092 .078 .174 .186

20 .01 .010 .014 .010 .016 .014 .030 .028 .020 .016 .092 .0t,4 .07A X190 .108

20 .10 .090 .092 .092 .094 .092 .094 .096 .090 .086 .132 .114 .100 .142 .162

C-2 20 .05 .042 .042 .052 .042 .044 .048 .056 .044 .034 .072 .058 .044 .072 .100

20 .01 .006 .008 .008 .014 .004 .012 .014 .010 .008 .026 .022 .012 .034 .034

20 .10 .108 .124 .100 .112 .116 .108 .102 .134 .140 .104 .140 .134 .116 .126

C-3 20 .05 .060 .056 .048 .066 .076 .050 .060 .092 .094 .058 .088 .088 .056 .060

20 .01 .024 .024 .010 .014 .020 .008 .012 .030 .024 .016 .024 .028 .020 .024 .V

20 .10 .108 .120 .100 .112 .114 .106 .102 .124 .130 .094 .128 .122 .106 .104 .

C-4 20 .05 .060 .056 .046 .066 .072 .050 .060 .080 .068 .050 .066 .070 .048 .050

j20 .01 .024 .024 .010 .014 .020 .008 .012 .018 .020 .012 .020 .022 .016 .018

20 .10 .098 .100 .098 .0838 .102 .098 .092 .106 .114 .108 .112 .110 .110 .106

C-5 20 .05 .058 .052 .058 .038 .058 .044 .046 .062 .064 .060 .064 .058 .056 .046

20 .01 .012 .014 .012 .014 .012 .014 .010 .010 .010 .010 .006 .010 .010 .006

20 .10 .098 .096 .102 .098 .092 .102 .110 .122 .104 .094 .116 .126 .098 .104

C-6 20 .05 .062 .048 .054 .038 .046 .056 .058 .070 .052 .040 .052 .066 .046 .050

320 .01 .010 .012 .008 .014 .014 .010 .008 .012 .0122 .016 .020 .020 .012 .010

rn I
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AN ALGRIMTIC APPIRCH FOR THE FITTING OF A P.
GENEIAL MIXED ANOVA MODEL APPRRIATE IN IDNGIT )INL SETTN .GS'.

Daniel 0. Stra'n, Nan M. Laird and James H. Ware

Department of Biostatistics,
Harvard School of Public Health.

667 Huntington Avenue,
Boston, MA 02134

The utility of the M algorithm in fitting mixed Ao odels Is discussed. Issues addressed
range from practical programming considerations to the suitability of the EM technique for the
inclusion of empirical or investigator Bayesian prior information into the estimates of fixed
effects and variance components. The class of AIVA models considered are appropriate in many
longitudinal problems including growth curve and repeated measures analysis with arbitrarypatterns of missing data. An example of growth curve modeling is used as an illustration of the .estimation techniques and model specification issues - and for the purposes of comparing the
approach with a simpler 'two-stage' analysis.

1. INRODLCTION. The model imposes a specific form on the
covariance structure of the distribution of the A

This paper discusses the use of the EM Yi. That is, the model for the independent yi
algorithm for fitting a subclass of mixed vectors is multivariate normal with neans Xiu
(fixed and random effects) linear models to and covariance matrix Zi - o2I + ZiDZi'.
longitudinal data. The class of models
considered includes growth curves as important Growth curves can be considered as a
special cases. We illustrate growth curve special subclass of these models characterized
modeling with an example taken from an energy by a linear relationship between the columns of
conservation study. which serves to illustrate the Xi and ZI matrices which we may write as
the general principles of the longitudinal mixed
model approach. Also discussed is the rate of XI - ZiAi ,
convergence of the E24 algorithm in this variance
component setting. Simple approaches to with A1 a known matrix.
speeding the convergence of the algorithm are
described and illustrated.

3. AN EXAMPLE OF (1WTH CURVE DATA.
2. THE CLASS OF LONGIWDINAL MODELS.

3.1 The Princeton 'Modular Retrofit Experiment'.
The class of models considered here. which

we term 'longitudinal random effects' models The data used as an illustration here are
(Laird and Ware 1982) may be written, as a from an experiment in energy conservation
representation for n different responses for conducted by Princeton University's Center for
the ith subject, in h; form Energy and Environmental Studies (Dutt et. al.1982). In the late 1970's the Center organized astudy which sought to measure the impact of two

Yi = Xi. + Zipi 4 (i(I .... m) (1) levels of conservation activities on energy
utilization in preexisting single family New

Here Xi i an re known design matrices (of Jersey housing (Dutt et. al. 1982). The levels
order ni xp ar noix respectively). is a pxl of so-called energy 'retrofit' activity were:unknown vector o£fixed effects. p is the qxl
vector of random effects for the iEh subject.
which we assume to be multivariate normally 1. 'House-doctor'
distributed as N(O.D) independently of gi and p.
for i w1 j. The 'intra-subject' error term i W 2. 'Major-retrofit'
assumred to be normal. N(0.0sI). The parameters
of the model which are to be estimated are then
the vector of fixed effects, a. and the variance The House-doctor level involved a single
components. namely us and the (q+l)q/2 distinct Jay visit by personnel trained in making
elements of D. In addition one often considers relatively inexpensive repairs to ventilation.
the estimation of the random effects. pi, heating, and insulation systems. The major-
themselves for the purposes of residual analysis retrofit level included the house-doctor
and assessing the influence of outliers. The treatment and the addition of attic and wall
LRE class of models is characterized by the insulation. To test the efficacy of these two
nestin of the random effects within subject. retrofit regimens a total of 138 New Jersey

_- 7.



houses heated with natural gas were enrolled in 3.3 The longitudinal random effects approach to
the study known as the 'Modular Retrofit the MRE data.
Experiment' (HRE) and were randomly assigned to
one of the treatment groups - control, where no
actions were performed by the study, house- An alternative to the two-stage analysis is

* doctor, and oajor-retrofit. With the the application of a growth curve analysis which
cooperation of participating gas utilities fits a single overall model for all the
utility billing data (usually collected on a consumption data in the experiment. The way of
one-month billing cycle) was obtained for one writing such a IE model which seem most
year prior to the retrofit and house-doctor analogous to the two-stage model is as
activity (pre-intervention,. Post-intervention
data were obtained by collecting meter reading a
data for an additional year following the 1
retrofit period. in the subsequent paragraphs a
we consider two approaches to these data - a -lPO

. two-stage model and a unified longitudinal [Pl
• " random effects model. a' (

3.2 Two-stage analysis of the MRE data. iYo

A two-stage analysis of the MRE data can be
performed in the following fashion. Let Yijk o  where Zi is of form
j-0,i, k-i.....nij, i-l ..... 138 he the average
daily natural gas consumptions by the ith house
for the kth meter reading in the jth period (j-.0 lio0 ioO !jOi.o !io
for pre-period and j-1 for post). For each
house in each period (pre and post) models of , 1 .. 1  Di
the following form were fit, using least L7

. squares.
and Xi equals Zi i with Ai equal to

Yijk - aij +bijHgDijk + 'ijk (2) i0 0 0 0 0 o 0
0 0i 0o 1 0 0 0i .'o

Here ai is the heating-insensitive or 'base- L 0 0 0 0 1 Hi Ri
level' onsumption for house i in period j, bi-
is the weather sensitive 'heating-slope' and Here y consists of all the n- .--

is the average daily heating degree-days conswrption readings for house 1, ijjis an
obselVed for meter readinq Period k for house I ni.xi vector of is, 0. , is a nixli'ector of
in period j. Once a and bij were obtained by Os and iwD is an n i'l vector 6f average
least squares the eilcts of the levels of daily eated degree 9ys for the meter reading
retrofit activity on the intercept and heating periods in period j (j-0,) for house i. and Hj

*. slope over the experiment as a whole were and Ri are dummy variables indicating meobership
assessed by calculating the differences in the two treatment groups. 2be random

effects, a. in model (4) are al, Aai . bi° and
* hb1, which are the individual hiouse pre-period

Sa1 2 - ail base-levels, change in base-level, from pre- to
post-periods, pre-period heating-slope and

and Abij = b1 2 - bil change in heating-slope, respectively. The
fixed effects are a, an overall sean of pre-

and fitting two separate univariate ANOVA models period base-level consumption, Po' , * which
to these data of form are the overall means of changes in the base-

level for the control, house-doctor, and major-
Aaij - po + pIHi + #2Rj + si retrofit groupa, respectively. The remaining

-+ and (3) fixed effect parameters for heating-slope, b.
&6ij - t o + yIHi + T2 Ri + &i To; ° Y and T2. are analogous to the parameters

a.po, 0. ,and P2 for base-level.
where H and R are dummy variables Indicating
membersip in he house-doctor and major
retrofit groups respectively.

-.. _ I:.::..:o. .
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3.4 Which analysis is preferable, WRE or two- of subjects to treatment. The assumptions
stage? required for the two-stage analysis is that the

unconditional distribution of the error term in
model (3) are homcedastic and Gaussian. Thus

The longitudinal random effects estiuetes inforwation collected in the course of fitting
of the treatment responses. Po, PlI a nd 112, and the individual subject models mny be regard as

," Y .'Landy 2 . nay be thought of as optially ancillary to the experinent and my be ignored
%wighed versions of estintes of the same without biasing the unconditional size of ,'

parameters in the second stage ANDVAs of model hypothesis test based on the two-stage approach.
(3). In particular if every house in the MRE
experiment were to have the sane Zi matrix for
the random effects (that is, the sane nmuber of 4. ALA3ITHIC PPRCH.
meter-reads and te same heating degree-days in
each meter-reading period) then the two-stage
and the URE analyses would be eosentially 4.1 The E algorithm.
equivalent. In the MRE study this was nt the
case. The number of meter reading periods wheLe Once it is decided that the longitudinal
data were observed for each house varied, as did random effects model is appropriate for these
the timing, meaning that the dates of the data we are faced with the problem of estinating
beginning and end of each period and hence the the variance comrponents in the model, nanely '.

heating degree-days differed for each house. and the elements of D. We follow Laird and Ware
While the ideal number of readings was twenty- (1952) in employing the E4 algorithm -- with

four for each house, corresponding to two one- certain modifications for speeding convergence.
year interviis, about 16% of these data were for the iterative estination of these
missing. parameters. We choose the EM algorithm for the

following reasons. First, when used for maxinum
The two-stage analysis makes no allowances likelihood estinotion the EM is known to always

for different variances in the intra-subject increase the likelihood at each stage of the
paraveter estinates (model 2) either due to iterations (see Dempeter Laird and Rubin. 1977).
missing data or to differences in heating Second for the IWE model (1) it has a very
degree-days across houses. For example. a house simple interpretation and inplementation in
with missing data in the summer will have a less terms of the unobservable random effects. Pi.
reliable estinate of Aa than one having a full Third, forms of prior information such as an
complement of data. Although the two-stage aprior distribution on the fixed effects and
analysis tloes not take this informtion into certain types of prior estimates of the variance
account, the random assigrment of houses to the components can be included directly into the EM
treatments insures that such data can be algorithm.
regarded as ancillary to the experiment, as long
es the causes of missing data are independent of
yi . The size of the test of hypothesis 4.2 Maximum likelihood and restricted maximm
concerning the effect of the treatment should be likelihood estimation.
correct for the two-stage analysis. The test
will, however, have less power than for the
mixed model approach - if the longitudinal To use the E24 algorithm in the mixed model
random effects model is correct. setting, we assume that the individual subject

random effects are missing data. If t Pis were
Note that the assumptions underlying the all known then the likelihood equations for the

RE model (1) are more restrictive than for the variance components, D and as would be
two-stage analysis. In particular the intra-
subject error variances, .', as we have
specified the model here, are assumed to be the
same for all the houses. For the Modular m
Retrofit Experiment this is a dubious D " i ii ' / m  (5)
assumption. For example. the R-squares for the
individual house heating degree-day models range ad
from above 0.98 at the highest down to 0.80 for ^ m
the lowest. This tends to imply considerable 0 - E (yl-ZiPi-X ')(yi-Zi i-Xi;}'}/N (6)
differences in the intra-subject error variances
from subject to subject. Therefore an important with
research question raised by the application of m _Z (7)
the RE model to this data set is just how - ([ (X'zi-1 Xi)- 1 Xi'Zi-(yl-Ziji) (7)
sensitive the size and power of hypothesis tests
based on these models will be to this particular m
source of model misspecification. and N - : ilj.

i"
The two-stage analysis, on the other hand,

is immune to differences in the intra-subject Laird and Ware (1982) show that iteratively
error variances because of the random assignment replacing the right hand side of equations (5)

le1
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and (6) with their expected values, give h m indatas_ the parameter estimates = N- [E yijyj-2E(lly)E Xi'y i
a from the previous iteration, and ii--1--

then recalculating, is an E4 algorithm algorithm M
as studied in Deiqster Laird and Rubin (1977). -2E E(pily)'Zi'y iLaird and Ware discuss two different approaches ."--tonrds performing the estimtion - that is, of m an
calculating (iteratively) the expected values of + E(Gly)' (z XiXi)E(aly) + tr(V(aly)E Xi'X i*D and as. The first is to assume that the i.1 i-1
fixed effects, a, are fixed but unknown m m
parameters to be estimated, in which case the EM + z E(pily)'Zi'Zi E(pily) + tr(Z Zi'Zi V(pily))
procedure yields maximum likelihood estimates i-i(MLE). The second approach they call enpirical m
Bayes. They inpose an improper prior + 2 E(aly) 0 E Xi'Zi E(pily)distribution on a as normal with mean zero and i-1
an (infigite) covariance matrix V. defined so m-
that V- - 0. In this case the EM procedure + 2 E tr(Xi'Zi COV(bieay).
gives estimates of D and as which are equivalent i--
to the restricted maxinun likelihood estimates where(PEIL) discussed by Patterson and Thopson m
(1971). Ealy) - H- 1 M xi2 y.

i-i
m

4.2 Computing Formulae. - -  (Xi1Zi(ZiZi D-1) - 1 Zi'y.
i =,

For maxinum likelihood estimation the m
iterations become: V(Uy) = 1 X Xi'X i

i-
=(' ( X/'X{) -1 z Xj(yj-Z1 E(p ly)) in: ''

i-1-i i-1 -2 Xi'Zi(Zi'Zi+VD 1 )_1 ziXi 1]
1

i-i() /m)iE [E(AI y)E(PtIy)'+V(Piiy)1 ](i[y) - (Zi'Zi+a*D- 1 )-(Zi'Yi- Z! XiE(I))

02(-) (1IN) E (yi-Xta)(yi-Xia)' V(pily) = as [(Zi'Zi+aD-'r+ GiH- 1Gi'

-2(yi-X i a)'ZiE(b i l y) COV(bI.puly) . -a2 (ZiZi o2D-I)-I Zi'XiH-l

+ E(jIy)'Zi'.ZiE(PIy)+tr(Zi'ZIE(PIy)E(Pily)') and where

+ tr(Zt1ZiV(Pily))] H - X'X - X'Z F- 1 Z'X

Where E(Ptly) = (Zi'Zi+a2D-1)Zt'(Yi-Xi*) -'-:.

and V(Pjly) - a(Zi'Zi+.D-1 )-. (a) 0 4 2 Zl'l+D- 1 ) 
0 ... 0

For notational convenience the iteration number 0

(6-1) has been suppressed in the right hand side [ ... 0 (- '.D - 1 )

of these expressions.L
and }•

For REML estimation the computing formulae
(from Cook 1982) are a bit more complicated, Gi - (ZiZi+asD- 1 )-1 ZiXi
they are:

4.4 The EM algorithm's speed of convergence.m °:
66) - (1/m) E E(pjiy)E(Pily)'+V(pjiy) One common criticism of the use of the EN4

t-I algorithm in many settings, not just variance
conrent estimation, is that it can be
extremely slow to converge - often even when
other methods such as Newton-Raphson or Fisher's

%L
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scoring converge rapidly. The reason that this It is useful to monitor the convergence of
can be the case is that the E1 algorithm is a the EM algorithm by estimating . is the course
first order sucessive substitution method - of the iterations. One reasonable estimate of x.
and thus will exhibit linear convergence at the might be
end of the iterations. To see this let 0 be the s
vector of parameters to be estimated by E. For - (s
the longitudinal random effects model 0 consists - lls s_ 1I) Z( i40u-0)1-.
of as and the q(q+l)2 distinct components of D. (13

The EM algorithm at the uth iteration consists (
of the successivae substitution step where a is the number of components of O. This

is the mean of the ratios of the differences of
- g(9~l))(11)the individual parameter estimates obtained in

where g represents the entire E step -- ie the the most recent two iterations. From equation
(12) it is clear that as a approaches - this
wrupdatingf)( to . If all of the parameter ( o-1".

the first term of a Taylor series expansion of g wilnere aoxifal or th ati
we can write changes are approximftely proportional. that is.

0 (u 1)_0(w) . g(e( ).- ( • - )) (() - 0(-1)) ((u-1) -

for i-l...,

where J is the matrix of partial derivatives and if £ is between zero and 1, then it is
* appropriate to use X to speed convergence. From

- g(0) equation (12) we can write -,

00S0' - 0(*-1) = 0(W) - 0(M-1 ) + 0(.+ 1 ) - 0(a) + ...

evaluated at O( l ). Assuming suitable -
differentiability conditions bold. as W _ W_ : ( -1)
approaches g|0) - that is, as the EM algorithm Xk(e 9()-B1)) - B- (0 - ).
converges. 3 o will converge to J-, and for w i-I
large enough we will have Thus we can estimate

0( +1) - 0( ) a J -(O W - 0( -1)) I;-= 0( - 1)  + 1/(1- ) (((u)-0(U-1) . 14)

to any desired degree of precision. Further Ti estimate, . colth be used of
iterationsi producee difee.e inthouldetr thenfel se instead oiterations produce differences in the parameter 0 '1 in further iterations., Of course it wouldestimates iteratively as be advisable to check ,that S actually increases

(k+*+l) (k+W) the likelihood over 0 . just to be sure. This
5 (-)R (0(W ) 0(•-1) (12) is essentially the same thing as applying a

univariate Aitkens acceleration to each of the

But this implies (see Gerald 1970 p 182. for parameters being estimated.
example) that the left hand side of the
preceding equation will approach an eigenvector Figure 1. Shows plots of several of the
associated with X. the largest eigenvalue of J" variance component estimates, against iteration.
(so long as x is distinct). We see, therefore. numter. calculated for the ME data. For
that the limiting rate of convergence of the E.4 illustrative purposes in this plot, extremely
will be determined by the size of X, which can poor initial values for D and as were purposely
be shown to be real and between zero and one used here. After the iterations had been run
(see Dempeter Laird and Rubin, 2977). If I is six times we calculated X' and the ISE of the
near one then the EM algorithm will be extremely sumnands of (13) as egual to 0.2204 and 0.0265
slow in converging since the step sizes will be respectively. Since X was relatively close to
small. On the other hand If u is near zero the zero with a small heterogeneity over the a
algorithm will be rapid (though still linearly components of 0. we expect at this point in the
convergent) in the final stages. iterations that the EM will converge readily. as

seen in Figure 1. At this point In the
iterations we can apply equation (14) with a - 6

4.5 Speeding up the E1 algorithm, although it probably is unnecessary to do so
since A is so smll.

The methods we discuss here are applicable
for accelerating the convergence of any linearly Another approach towards speeding up the
convergent successive substitution algorithm, algorithm is to estimate J' rather than I and
They can be considered to be mrultivariate form use a multivariate generalizatiog ?f the Aitken
of the Aitken acceleration method (Gerald 1970). acceleration procedure. si c toJ generally
The basic idea is to employ either an estimate must approach J before e - 0 converges
of J or of X to change the convergence behavior to an elgenvector of J- we see that Jf can often U

. of the EN algorithm from linear to quadratic. be estimated earlier than 1.
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'.'-Figure I :Plots of Several Variance Component Estimates Against Iteration Number.',.

for the MRE Data. " ,%'

"" 7h question which remains is: ow does one
This method essentially amounts to eploying a etmeJ? ncodofousetiteJby"'""

' Newton step to help solve the likelihood j-!,.t Jor Onexi uld ikeiours estimatn J"~i by

"" euatonsas wittn exprBji on ll If we not too hard to give explicit formulae for J'01o

-oa 67 
0.6 s

wrtr either by directly dfferentiating the updating

e - ' '- e' , + .... and if we approximate fornulae presented in Eq (8) of Section 4.2, or
(k+ gl - e' k+* i as by using methods discussed by Louis (1982).

These calculations, however, would seem to get
J(kul) (9(k+*) - e(k+-l) unbearably messy for REix estimation. It is.

.hva." ocenevertheless, ,n~t generally necessary to know
we have as 1 approaches the form of. , to attempt the speedup. We

can instead approximate J from the past history
- of the iterations themelvs T  Thus for

- e( - 1) * Z (j)k) ( )_e(-l). a ) s we can approximate J w as ,4
k-1

.7-8 (i1 (16)
Since, from Dempeter Laird Rubin (1977), J has

. all its eigenvalues between zero and one the where i6,1 is an sxs matrix of form
power series converges and is equal to (I-0J) - .  ('-e 6 -l - -2"** .e'usl'-e%-8",.

Thus by approximatlng J" we can try F:'speeding up the algorithm. estimating As * approaches - this procedure becomesse g t aoh ei inumerically unstable because

'" e e(' - 1 )  (I-'1-!(e( -e( l)).(1 )(-)- (-2)) (-2)-e(-))

Then (after checking ht 0 indeed increase an s the inverse of 1no longer exists. of
the lklihood over 0 ) we can substitute e a

for e in further iterations u course when this occurs we can simply switch to
the 'X-method' to accomplish the sane thing.
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While for the MM data the E4 iterations (oj) - e15) , (e1) - *j4))
converged quite readily it is not hard to find
exan ples of slow convergence. Figure 2 gives varied p;qatly rom 2.s to 0.09. indicating
plots of estimates arising from a growth curve that ) was nowhere near an
problem where convergence was extremely slow. eigenvector of J-. Nevertheless good results
We notice that the first few iterations for these data were obtained by the use of r .
(starting from fairly poor initial values) the multivariate Aitken's acceleration method r.-'
produced large step sizes but in the later (15) when this procedure was applied at the 6th,
iterations the alqoritm was very reluctant in 12th, and 18th iterations. The results are .
approaching its final values. Even after more shown in Figure 2 as the line on the plots which
than one-hundred iterations the variance begins at iteration 7.
ccmponent estimates continued to change in the
third decimal place from step to step. After Our reccomendation for exploiting these
six iterations of the E4 on these data we' extremely simple procedures for accelerating
estiRoted J using Eq (16) as convergence is to attempt to use Aitken's

acc leration method, Eq (15). first, but. if
0.7607 2.7226 1.3997 -4.1169 Ow- is too illconditioned to invert, to switch5-0.0178 1.7790 0.3019 -1.3840 to the X-nethod, Eq (14) where the largest

-0.4552 -6.0342 -2.5391 8.0242 eigenvalue. x, is estimated from Eq (13). In
-0.1122 -0.5491 -0.5458 1.4118 passing we note that the ccmputational burden of -

these techniques is far less than that of
performing an EM step and thus should always be

We find that the largest eigenvalue of this considered as a convergence accelerator, or in
ffetrix equals 0.899 which corresponds well with fact in any linearly convergent iterative -
the slow convergence of the estimates observed algorithm.
in Figure 2. However at iteration 6 the use of
the 'k-method' seemed inappropriate since the
summriands in Eq (13), namely [.
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Figure 2 Plots of variance Component Estimates for Growth Curve Example.
Also Shown are the Results of Aitken's Acceleration Procedure.
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4.6 Incorporation of 'prior-information' on the estimation, the longitudinai random effects ,-,

variance components. model discussed in Section 3.3 to the MRE data %

are shown below.

In Section 4.2 we noted that the El
, algorithm is well suited to estimation when an a 1.512

improper prior distribution is placed on the PO -0.081 OCF/DAY
J 'fixed effects'. a. for empirical Bayes Pl -0.152

estimation, which we note is equivalent to R2L -0.173 6
estimation. The EM algorithm is also suited to b 0.228
the incorporation of certain types of prior -0.026 CCF/HM
information on the components of D. -0.013

Suppose that we have a prior estimate Dp of 172 --0.034
D and further suppose that we think of D, as
having resulted from observing np indepetilent. - 0.241
'undcservables'. pl. for i-n .. 0. (Thean
negative index indicating the prior nature of and

admittedly artificial, assumption it can easily -0.0180 0.0106

be shown that the EM step for maximizing the D = 0.0136 -0.0005 0.0047
ccibined likelihood of the observed yi ()O) and -0.0010 0.0007 -0.0010 0.0006

i O) data is to simply let .,

---- The estimate of the variance covariance

m+np matrix of the fixed effects is:

Here W( ) is the usual EM estimate, as given in -4.12 24.03
Section 4.3, at tht "",iteration, but -0.15 -22.24 36.62 X 10-5
calculated using 6v- as the estimate at the 0.09 -22.34 22.30 42. 3 --

pei us eain.? .9-23 23 25previous iteration. 0.77 0.18 0.01 -0.01 0.28

0.13 -0.95 0.3 0.86 -0.02 0.09
Of course it would be quite unusual if a 0.00 0.85 -1.41 -0.86 0.00 -0.09 0.1-

meaningful estimate of D was available before 0.00 0.85 -1.41 -0.6 0.00 -0.09 0.1
the start of the experiment. much less that the -0.01 0.86 -0.6 -1.63 0.00 -0.09 0.09 0.17

estimate had been derived by measuring

unobservables. Nevertheless this procedure may Table 1 compares the results obtained using the
still have utility in certain cases. Helms
(1985, paper read this session) reports a number . longitudinal random effects methods with those
of instances when (using Fisher's scoring to f eal
find MI estimates) the values of D and 02 which We note that the WRE analysis gives greater
solved the likelihood equations were outside the statistical significance to the changes in
parameter space. That is, I had one or mre heating slope and less to the changes in base
negative eigenvalues. When using the EM level than does the two-stage analysis. This
algorithm in such circumstances the eigenvalues seems to reflect the fact that missing data were
of 15 will not actually be permitted to become more common in the summer months of the studynegative. the estimate. D. will instead head than in the winter, since in general missing a ;..
towards a point on the boundary of the parameter summer datapoint has more effect on the

space as a limit which is never entirely variability of the base-level parameter than on
obtained. In this case it would seem entirely the heating slope. The group with the largest
justifiable to pull back D from the boundary in proportion of missing data was the house doctor
a specified direction, perhaps towards the group in the post-period. It is this group's
identity matrix. Thinking about this procedure estimate of change in heating slope (over that
in terms of the employment of a 'prior' estimate of the controls) for which the conclusions of
of D means that we can characterize our final the two analyses differ most markedly.
estimate in terms of the strength of the prior
information used, that is, the size of n,, to 6. NCLSIONS Al REAj.
produce the final estimate. This procesb would
seem to roughly correspond to the ridge One reason for offering the Modular
regression approach t9wards least squares Retrofit Experiment data as an illustrative
fitting, example for the longitudinal random effects

model is that it raises several interesting
S. RESULTS FOR THE P RINCETM DATA, TW0-$SEM model specffication issues. For example, the

VS iLNGITUDINAL RAW EFFECTS. assumption that the error variance, as, is the
safe for all subjects is likely inappropriate
for these data. Moreover, the form of the

The results for fitting, using RE . intra-subject models used here is less than

",I.-
'I[
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TABLE I CcMponents problem, this criticism is
inappropriate if one is primarily interested in

ESrIMATED PARAMEIER CHUMS IN TRM4E GUM the estimates of the fixed effect aerameters.
OVER C FOR THE DA When using ML estimation the expected r

information estimate of tt asymptotic variance
tRE of the fixed effects gives

ANALYSIS ( m ' 4' '

Heating-slope Base-level Asm Var - [Z XiI + ZiDZi1)-l ]

House- -0.011 -0.138 Thus when computing the asymptotic variance
doctor (-2.898) (-2.274) covariance matrix of a we do not Include any

information concerning the variability of our
Major- -0.033 -0.161 estimates of D or as. This estimate of the
retrofit (-7.968) (-2.474) variance of i. or any linear combination of ",

can be computed once. at the end of the
iterations. While Fisher's scoring, unlike the

SW)-SrAGE El. automatically gives information about the
ANALYSIS variability of D and 02, at the end of the

iterations, it does not give any way to make use
Heating-slope Base-level of this information in refining the estimates of

the variance of a, which is the issue most often
House- -0.008 -0.176 of interest. The fact that for ML estimation an
doctor (-1.21) (-3.42) information matrix for the variance components

is available using Fisher's scoring. but not .,
Major- -0.03 -0.212 from the EM algorithm, does not alone seem to be
retrofit (-4.57) (-3.79) important enough to govern the choice between

algorithm, at least in most common applications
of the IRE model.

t-statistics are shown in parentheses.

optimal as well. In modeling the individual PEFE"'" "'
houses here, all heating degree-days were
calculated at the arbitrarily fixed temperature
setting of 600F. A more physically meaningful [1) Cook, N.R. (1982) , A ggA Linear .,.,
model for the individual houses involves the A oa± tQ Loligitudna Data Analyni.
estimation of the heating degree-day reference Ph.D. Thesis, Departrwrit of Blostatistics.
temperature, as in Dutt et al (1982), for each Harvard School of Public Health.
house in each of the pre- and post-periods.
That Is, the model should take into account the 121 Denpster, A.P., Laird, N.M., and Rubin,
possibility of between-subject variation in D.B. (1977). 'Maximum Likelihood from*
thermostat settings or other physical factors Incomplete Data via the EM Algorithm.'
v4icb affect the reference temperature at which hcm L the t i at D cI Alcg o ,
a house's gas furnace turns on as temperature 39, 1-38.
decreases. Such reference temperature
estimation, however, produces an intra-subject [31 Dutt. G.S.. Lavine, M.L., Levi, B.G.. and
model which is intrinsically nonlinear in its Socolow, R.H. (1982), ' The Modular
parameters. The incorporation of nonlinear Retrofit Experiment: Exploring the House
intra-subject models into the IRE setting must Doctor Concept'. Princeton University
be regarded as an area open for further Center for Energy and Environmental Studies
research. Until the significance of these Report No. 130, Princeton, New Jersey
departures in ode] specification are further 08544.
investigated -- or until the LRE model is
further extended, the two-stage analysis of (41 Gerald, C.F. (1970). hgpigd HLEiIa
these data would seem to be the most Adson-Wesley.
trustworthy. Nevertheless, the comparisons .din ey
between the two-stage results and those for the [51 Helms, R. (1985). 'Algorith s and Software
WRE model are very intriguing, for the Analysis of Incomplete/Mistimed

Lingtudinal Data,'. Presented at the
One common complaint about the EM Seventeenth Synposium on the Interface of

algorithm, when compared to gradient methods Computer Science and Statistics, Lexington
like Fisher's scoring, is that at the end of the
iterations we are left without the usual KY.

information matrix estimate of the variance 161 Laird, N.M. and Ware. J.H. (1982), 'Random
covariance matrix of the parameter estimates. Effects Models for Longitudinal Data.'
We note here, however, that in the variance B, 38, 963-974.

/I
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Algorithm.' Journal of the Royal
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MEASURING THE PERFORMANCE OF STATISTICIANS WITH STATISTICAL SOFTWARE V..n

A discussion workshop moderated by

John C. Nash 'AL

Faculty of Administration

University 
of Ottawa~~~~Ottawa . Ontario. d KIN 9B5 ,..,

Canada I

The intended purpose of this workshop was to bring to light ideas

relating to the effectiveness of use of statistical software. That is.

the fact that a particular piece of statistical software is capable of

performing a given task is to be considered within the perspective of

the ease and efficiency with which a user can avail himself/herself of
this functionality. The discussions reported herein focussed on

benchmarking and the desire of users to be able to deal with

categorical variables which have an underlying ordering, as well as

some of the mundane but important details of statistical computing.

LIST OF PARTICIPANTS suitability. A previous workshop

entitled "Which tools to use in

Commins, Bill (National Science statistical analysis? Choices of

Foundation); hardware and software" (93 was held in

Dumas, Bonnie P. (Westvaco) ; Ottawa on November B, 1984 as a prelude
Dvorin, Marian (U. of Maryland); to the present discussion. It took as
Easley, Diane (Cameron Iron Works); its perspective the choices open to the

Hertsgaard, Doris (North Dakota user in attempting to solve a

State U.); particular statistical problem. In the

Jennings, Dennis (U. of Illinois); present workshop it was intended that
Kao, Tzu-Chey (U. of Wisconsin - the emphasis would shift slightly to

Oshkosh); give an overview of the process by

Kolesar, Bob (Engelhaard); which software might be assessed and

Lane, Peter (Rothamsted Experimental selected in order to develop measures
Station); of "performance" of the statistician
Lee, Shui T. (NIOSH); with the statistical software.

Ling, Robert (Northwestern U.); Recognizing that this goal is
Mehra, Munish (U. of Kentucky); ambitious, it was gratifying to note

Morgan, Blaine (U. of Tennessee); the willingness of conference
Nash, John C. (moderator, U. of participants to cooperate in developing

Ottawa); ideas in this area.

Nelson, Elizabeth (Internal Revenue

Service); The workshop was moderated by J.C.Nash
Robinson, David (Henderson State U.); who wrote notes directly on overhead
Sacher, Richard S. (RPI)( slides which were then drafted into

Schuenemeyer, Jack (U. of Delaware); this report with the help of some of

Scott, Del T. (Brigham Young U.); the participants (identified in the
Simon, Steve (Bowling Green State U.); Acknowledgements) The report is

Simpson, Pippa (U. of Kentucky); structured as a dialog, though the
Tung, Sarah (U. of Delaware); editor has taken some liberties in
Walstenholme, Dave (Imperial College); expanding the original notes to clarify
Wang, Chyan-Ji (U. of Kentucky); the ideas. Due to time constraints in

Wang, Lung-Chu (U. of Kentucky); preparing copy for publication, some
references and statements remain

incomplete and are marked as such by

INTRODUCTION

This workshop was organized in an DISCUSSION
attempt to bring together statisticians

and designers of statistical software Tung: Can we focus on the following 2

so that an exchange of ideas might ideas:
result in the future development of

statistical software well-suited to 1. the development of benchmark
particular classes of users and problems and data sets;
procedures for assessing this

%r
S. *-~-...v*-.. -
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2. the criteria for assessing Several: It is important to decide what
how well the software has handled to do when collinearity is diagnosed. f
these

Nash: In +orecasting/prediction %
General group: - agreement to this applications we may not need the=*

suggestion coefficients so that a minimum length

least squares solution 18, p.173 may
- suggestion that linear be useful. This is equivalent to some
regression benchmarks be the first principal component solutions.
target problem.

Scheunemeyer: The ridge regression

Simon: There are two benchmark data methods may also be reasonablesets, the Longley dataset which is alternatives for both forecasts and 5:/-'

routinely applied by software reviewers parameters.
and the Wampler/Lauchli dataset.

Simon: There are software design .'.

Nash: There is also the Wampler questions related to this discussion.
polynomial data sets. Most packages use either of the

following choices:
a) Longley [6]

1. try to give the "best
Scheunemeyer: This data has 7 possible" answers for any data
independent variables (plus the set (with a warning given to the
constant) for 16 time periods. The user when needed);
dependent variables relate to
employment. The independent variables 2. refuse to analyze any data
are highly collinear and there is a set with extreme
scaling problem. ill-conditioning;

Kolesar: The Longley set is good for Lee: Choice 3 is choice (2) with remedial
testing for these difficulties. actions suggested by the program.

Scheunemeyer: Even extra years of data Several: Choice (1) makes it too easy
do not improve the collinearity to an for users to continue BUT also more
appreciable extent, options for informed user.

b) Wamnpler polynomial least squares £10] Nash: It is not widely recognized that

elimination methods ("sweeping") may
Nash: This data offers several problems not flag rank-deficiencies. The

with increasing collinearity, though typical pivot tests are sufficient but
they are not parametrized CS]. not necessary condit'ions. There are

some examples of matrices which appear
c) Wampler/Lauchli £4, Il] well behaved but are quite close to

being singular, for example, the Moler
Simont The Wampler/Lauchll set is a matrix, E8, p.210).
parametrized set whose regression
coefficients can be shown analytically Kolesar: We need to distinguish special
to be a column of I's. By steadily cases versus general packages. This
lowering a parameter epsilo, towards could involve different control
zero, you make the columns of the X parameters for the software.
matrix (excluding the intercept)
increasingly collinear. The advantage Consensus: 1. A "long pause" is needed
of this set is that you can examine a when collinearity is detected, with
package's performance with both questions posed to a user which require
moderate and extreme examples of that he/she understand the consequences
ill-conditioning. Longley gives a of proceeding.

single extreme that may or may not be
representative of the data sets one is 2. Software should suggest remedial
likely to encounter. One criticism of action to overcome the collinearity.
the W/L set is that it is artificially

generated (see Lesage and Simon, Several: What about judging software?

£41).
Ling: There are questions of numerical

Lane: Such data sets are mostly useful versus statistical accuracy. V
for testing diagnostics.

Wang: Numerical accuracy is a function
of algorithm and precision available.

" " * -o -"", -- •
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Simon: IF the algorithm and arithmetic 3) the sample is censored by the

are correctly programmed. arbitrary 3 hour limit, which r
eliminates a larger proportion of one

Ling: NOT true, due to hardware and sex than the other. Furthermore, we
data dependencies, have no way to include runners who do

not finish. (Several participants

(Editor: This differende was not wanted to know if there was any

totally resolved.) *ndication of the number of %

starters.)
Several: Statistical accuracy -- is

beta-hat "near" center of the Commins: Higher participation rates by .

distribution of possible estimates women might explain relative
given minor perturbations in the data' improvement in performance by women.

This is related to the numerical

accuracy. [Readers should also note Suggestion by Innis Sande (Statistics
the paper by G.W.Stewart elsewhere in Canada) conveyed to participants via

these proceedings.] moderator: Need a "marathon" effect to

account for differences in terrain and

Nash: Are there any parametrized data weather. [
sets which allow the difficulties
discussed to be tested AND Moderator briefly presented R.Thomas

perturbations to be introduced? approach:

Simon: We have some work in progress I) plot the cumulative distribution

E5]. of times for each race/sex .

2) try a mixture of normal

PROBLEM: Marathon run times (courtesy distributions for 2 groups (elite, .

Roland Thomas. Carleton U.) recreational)
'

Problem type: estimation of 3) use a (random) subset of the data
distributional form / parameters and for preliminary determination of the

testing of various hypotheses. distributional parameters to save

computing time.
Originators: Roland Thomas, John Nash

Sacher: Is it really necessary to
Features: The times of all marathon consider a random subset, since a

races run in Canada under an arbitrary convenience subset (systematic
3 hour limit were recorded for several sampling) would probably suffice for
years for both men and women. It is the purpose?

desired to fit the distribution of

times for each sex separately to a PROBLEM: Data handling and presentation

mixture model that might represent b

competetive and recreational runners Problem type: data manipulation,
within each separate sex group. The tabulation and graphing

underlying hypothesis is that, though

the "average" difference between the Originator: Judd Hampton, Agriculture

sexes is of the order of 30 minutes, Canada

the difference between "competetive,

times for males and females is much Features: This problem involves the ,N.

less, perhaps closer to the actual handling of a relatively large number

record differences, which are of the of variables on an ongoing basis, and

order of 15 minutes. Since several the preparation of tables and graphs

years of data are available, one may based on this data on both a regular

also hope to observe the changes in and ad hoc basis.
performance levels of both sexes.

Background/client group: Marketing and

There are particular aspects of the Economics Branch, Agriculture Canada, -

problem which make it quite difficult: produces quarterly Market Commentaries
for Grains and Oilseeds, Dairy,

1) the data set is quite large (5000+ Livestock, Horticulture and Special

observations each year) Crops, Poultry and (consumer) Food
sectors. These commentaries report the . .

2) there is no a priori model which situation and outlook for each sector

may be suggested other than the two and are used by producers, the

population mixture financial community, government at

":1""
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different levels. agribusiness and (Note'" there was actually more -As ,.

consumer agjencies. Note that the discussion of thi problem. but the Hl
-- -

output requires accented major, points raised are covered here. ).'-.

chat'acters. (Many popu lar software ,'.'.

- ~packages such as Lotus 1-2-3 cannot .-.
easily be modified to allow graphical PROBLEM: Contigency table with ordered-..-'"

or printed output with such categories °--%
characters.).".
~~~Originator : Roland Thomas (Carleton U. ) .%
Problem: The Statistical Analysis Groupi. m 

-

of M&E Branch has the task of producing Features: A cross-tabulation showsa2detailed tables and graphs o the state respe gainst 3 categores of

commentaries which are used at the one predictor and 5 of another -- a

annual tAgricultural) Outlook by 3 by 5 table. One or more
conference. This involves predictors have categories which have --approximatel s camera-ready graphs an ordering e.. they represent the

which must contain accurate up-to-date ranges of a numerical variable which
information presented clearly in both are observed. How can such data be

official languages in accordance with analyzed efficiently while using the .strict editorial standards. The ordinality present in the predictors>U

publication deadlinsarel tights and

ofte E Bachs th e ase producing Features : r cr ssaulain seihws at2

the source information the different categories ...

Current approach: Originallyt Lee: Then use a logistic model on the
hand-drawn graphs and typed tables were assigned weightin .

used. In the early 197sp
Hewlett-Packard des-top computers were Lane: Chapter ?? in McCullagh and th

introduced (982 and 983 series) with Nelder ef discusses this model.
plotters for graphical output. The They parametreze the proportion of

quantity of output as such that one response as one cumulates through the
plotter actually wore out the (ordered) categories. ...-
potentiometer slide wire (the only case L Tn e l s m ln
the HP technicians had heard of in Lee: One has to choose particular

.this happened. Now HP 9845 brea-points in a variable to eaiverl __

series machines are used. Software was appropriate categories. ua n

" ~~created to maintain and update '.-
databases containing monthly and annual Scheunemeyer: We are trying to force
time teries and to print current and ordered categories into a continuous

. past data and five-year averages. A case.,..
tMultimriter letter quality printerproduces the final tables for Dumas: SAS GSK command can be used to"

photoreduction. HP flatbed plotters perform weighted least squares.
are still used to produce high quality Another approach is ENCAT (Landis

plotse In some cases the multiple pen 1974??). Brown (BMDP) is writing a new
capabalty is used not for colour but code tW ... ae?? ,rin.tfrc

;for different pen widths. HP softwaremhas gserally not proved adequate to Cor ins: If we get a "good" fit without
meet production standards. and software using the ordering, should we continue
produced in-house is prepared as our analysisK cmn abes t

i needed. -

Jennings: Scaled model has one ;:.7
polesar: For regular t i.e. routine, p er er variable while theuse special purpose programs are independence model has one per level of

alikely to be the bent choice variable. If the contingency table

indicates independence we may wish to
trConsensus: the decision to use a continue analysis. solwectiu

special program should be governed ba asoralyi
decision rule Simon: Conover [2 pp. 232-234,

335-338 and problems 3 and 4 an p.3863~ E(no. of uses) * E(saving/use) < mentions using ranks in a contingency '-"
o Frutable with an ordinal category. This

Cost of preparing program approach relies heavly on average

.' ~ranks. ." .
oLane: A session at the Prague COMPSTATotnealyimeeting discussed such problems3,n4op3

E3. see also a. At this pointg despite fairly active
tabeit anorinl.ateor.-hi

;' . . '"..'- ... ' ... :--. .. ,a .",',t' .. ~ . 2 k .. "-tZ,. -" -- ,. - -..-. ,....-.i _ ,..;- .. Li'.. - . . . . '.,



discussion, the moderator had to bring E73 NcCullagh, P. and Nelder, J.A., 41

the session to a close. Generalized linear models. Chapman

and Hall, London (1983).

ACKNOWLEDGEMENTS (81 Nash, J.C., Compact numerical

methods for computers: linear
Stephen Simon and Peter Lane algebra and function minimisation,
contributed written comments on a draft Adam Hilger: Bristol and Halsted

of this report which were extremely Press: New York (1979).
helpful in resolving ambiguities in the
text. David Allen arranged that the E8] Nash, J.C., Accuracy of least
conference room seating was appropriate squares computer programs: another

" to a workshop situation. The Ottawa reminder:comrnent, Amer. J.
" Chapter of the American Statistical Agricultural Economics 61 (4)

Association, in particular Elaine (November 1979) 703-709.
Hoskins, President, organized a similar

workshop at which the format and (91 Nash, J.C. (ed.), Which tools to use
background material for the present in statistical analysis -- choices
activity were developed. of hardware and software, Notes of

a workshop. American Statistical

Association Ottawa Chapter
REFERENCES (February 1985)

E1] Bells, Th.H.J., and Verbeek, A., [103] Wampler, R.H., A report on the
Standard packages versus tailor accuracy of some widely used least
made software: some experiences in squares computer programs J.
statistical production, Statistical Amer. Statistical Assoc., 65
Software Newsletter, 10 (2) (1970) 549-565.

(September 1984) 68-74.

E11] Wampler, R.H., Test procedures and
12] Conover, W.J., Practical problems for least squares

nonparametric statistics, John algorithms, Journal of Econometrics

Wiley: New York (1980). 12 (1980) 3-22.

(31 Havranek, T., Lane, P., Molenaar,

I., Nelder, J.A. (chairman), Tilt, APPENDIX
E-N. Verbeek, A. and Victor, N.,

Standard packages versus tailor The Wampler/Lauchli dataset
made software, a panel discussion
at COMPSTAT'84 in Prague, Y = (n - I + epsilon), for i=1

Statistical Software Newsletter, 10 .

(2) (September 1904) 56-67.

= epsilon, for i=2.••,n-I
(4] Lesage, J.P. and Simon, S.D.,

Numerical accuracy of statistical = In -( - epsilon), for i=n
algorithms for microcomputers,

American Statistical Association, X = 1, for i=l, j=l,...,n
Proceedings of the Statistical
Computing Section (1984) 53-58. = 1. for 3=1, i=l,...,n

(51 Lesage, J.P. and Simon, S.D., The = epsilon, faor i=j=2,...,n-1

impact of centering and scaling on
the numerical accuracy of = 0 otherwise

regression algorithms, submitted to
the ASM conference on Mini and (X is a bordered diagonal matrix)

Microcomputers and their
Applications to be held June 3-5,

1985 in Montreal.

(6] Langley, J.W., An appraisal of
least squares programs for the

electronic computer from the point
of view of the user, J. Amer.

Statistical Assoc. 62 (1967)
819-831.

" .',



ESSENTIAL INGREDIENTS FOR A STATISTICAL WORKSTATION '

Thomas J. Boa rdman

Department of Statistics
Colorado State University

Fort Collins, Colorado

In the future engineers, scientists, and other professionals will perform many of
their work assignments on computer workstations. In part, the renewed interest in
statistical methods as one tool for helping industry and government improves the
quality of goods and services, justifies the need for statistical components in the
workstation. Some design objectives for workstations are discussed in order to lead
into a discussion of the necessary hardware and software ingredients for workstations.
one scenario is proposed by describing how the statistical functionalities on a work-
station might appear to the user if the hardware has a bit mapped screen similar to
the Apple Macintosh. Finally several challenges for the future are described which
offer encouragement for improvements in statistical software in the future.

1. INTRODUCTION many of our homes. Furthermore I suspect that
computers will be in a great number oF the

My intention is to challenge your thinking about graduate students' homes after they complete
how people may use statistical methods in the their studies. So we can say that computers
future, perhaps even the way people will first are For you and me and the kids. The pressure
learn about statistical methods. You might ask on adults from youngsters using computers will
why should workstations have statistical compo- force adults to think about how computing
nents? Let us start back at the beginning and actually needs to be done. Bruce Woolbert made
discuss the increased interest in computing. I an estimate based on the same research that
met Bruce Woolbert, of Hewlett Packard's Person- Hewlett Packard had commissioned. Hie reported
al Computer Division, at the Pharmaceutical that by 1995, 65% of ALL office workers will be
Manufacturers Association Biostatistics Sub- using computers. Are the adults ready for that
section Annual Meetjtng, held in San Francisco magnitude of commnitment?
in October 1984. He and I had been asked to
address the conference. Hewlett Packard Interest in statistical methods has been gener-
authorized a firm to do market research for them. ated by the renewed interest in quality and
Bruce Woolbert reported some of the results productivity. Competition from Japan and other
during his presentation. One statistic he re- countries has awakened U.S. industry to the
ported is that one in thirteen office profes- fact that statistical methods can help improve
sionals is currently using computers in his/ processes. Of course statistical methods are
her job function. lie went on to say that we only a part of the quality improvement efforts
are increasingly seeing new uses for personal and processes do not involve just goods. Some
computers. People are finding there are ways estimates show that in excess of 85% of all
that they can use computers that they had not employees are actually in the service ares.
even considered in the past. For example, net- There are many opportunities for improving
working of computing systems will be much more quality and therefore productivity in the
popular in the future. More about this topic service area.
later. In fashion at the moment are ideas for
using computers in new ways such as computer- The new emphasis on quality is affecting the%
aided design, computer-aided engineering, way management deals with their employees.
computer-aided manufacturing, and computer- There is a new awareness of the employees' roles:
aided office. All of these reflect the market's to know their job, and to get their job done
movement toward integrated systems, more effectively. The annual National fluality

Month is one indication from Congress and the
Computers are used from the bottom up. By that President of the importance of this area.
we mean that computers are now used all the way Other activities such as the American Statistical
from secondary education through college. Their Association's Committee on Quality and Produc-
availability in education certainly has an ef- tivity, are of course concerned with smaller
fect on what we are doing in our course work in audiences but still show some commitment from
higher education. Within the last couple of ASA.
years I have seen considerable changes In my
own department in terms of the quality and The software business is booming. The "Direc-
types of computing that we are doing in our tory of Software for Quality Assurance/Quality .
course work. Control" in the March 1985 issue of Quality____

Progress, listed 118 packages. Almost all of
Computers are also used In industry and in3



- them have some statistical components. Quite a like nails. *'4

few of the packages are strictly statistical
packages such as SPSS, MINITAB, etc. What does Another justification for workstations involves
this mean? There is a renewed interest in sta- the concept of networking of computing resources.
tistical computing. The proliferation of sta- The networking concept involves more than just
tistical software is important because it is an- sharing computer peripherals such as printers
other sign of the beginning of the understand- and plotters. Ideally networks of computing
ing that statisticians and, more importantly, devices will free the user from having to make
statistical methods can really help. W. Edwards decisions about which computer offers the

*Deming says that American management has to proper environment for today's tasks. A net-
change. Even though it is only a small part of work system should provide simple ways for
the transformation process, the use of sta- users to communicate with many computers without
tistical'methods is nevertheless part of the having to know many different protocols. Con-
process. Management is faced with making sider my own situation. Currently I am working
meaningful decisions in the face of uncertainty on the IBM XT in the Stat. Lab., I have a

*and variation. Using the scientific method to Macintosh at home, I use the CSU CDC CYBER
get meaningful information upon which to base mainframe computer for many statistical appli-
some of their decisions is beginning to be cations, I am on the Engineering College col- '

recognized as a valid approach. Statisticians lection of VAX's and I recently tried SAS on
and statistical methods can help managers make the Vet Hospital's Data General. It is mind ,

*decisions in a scientific manner, boggling to try to remember all the different
protocols to get on all of these machines. one

2. WORKSTATIONS potential advantage for a network environment
at CSU is that interfacing to the various

*Why should the statistical computations be computers could be much simpler. You would not
*implemented in a workstation environment? have to remember anything except the protocol
*There are a couple of key points here. The for the one machine you prefer to use. The .Z

order is not important. One is the prolifer- computer network would interface to all the
ation of microcomputers. I do not have recent others. If one machine needs a caret C or
estimates of the number of microcomputers at whatever, the network systems could remember

*CSU but I suspect that it is probably upwards that and take care of it for you.
of a thousand at this point. In the spring of
1984 the estimate was in the neighborhood of Finally workstation environments will abound be-

*400 with new orders at about 80 a month. Un- cause the suppliers of these systems will con-
*fortunately our statistics department is not vince us through advertisement that we cannot

expanding in microcomputers as rapidly. Never- do without their systems. This reason may
theless the growth is dramatic. actually dominate all the others. Why? Be-

cause software vendors are going to make a lot
*Another reason why a workstation environment of money on workstation software. Vendors are

makes sense is that people who use computers just beginning to push the concept of integrated
have more than one task to do. Although they packages. The workstation environment is a

*tend to be focused around one speciality, step beycnd several integrated packages. In
*computer users find themselves using word this environment almost all tasks which we would

processors, statistical packages, and wanting like to do on a computer are "integrated" togeth-
-to do lots of different tasks at a computer. er.
- The idea behind a workstation is to put togeth-

or all of the tools necessary to help a user What are some of the essential components of a
Iperform any number of tasks. Thus it is an workstation? Consider the following three cate-

important design concept to make workstations gories: the design objectives for a workstation,
*simple for workers to use. Workstations are the necessary hardware ingredients, and the
*being looked at as an effective way to get the necessary software ingredients. At a conference

job done. Computers are not a substitute for sponsored by SIGNUM of ACM in March 1984 I heard 1
good hard thinking or good creative work. Dr. a presentation by John K. Wooten of the Computing

-Deming discusses what he calls "instant putting Division of Los Alamos National Laboratory. His
* solutions"; that is, any solution to a problem talk touched on the first two areas above...

that is easy--not necessarily cheap but easy to Blending my experience as a project investigator
*do. Some look at computers as being an effective and consultant for Hewlett Packard with recent
*way to make better quality products and to in- visits to AT&T Bell Laboratories, discussion

crease People's quality and productivity, with those at previous Interface Conferences,
Deming is convinced computers will not replace reading articles on the topic and considerable p
good and creative thinking. Workstations thinking, I hsve prepared the following lists

*should be viewed by management as one potential under the three categories mentioned above.
tool for improving the quality and productivity
of the workers. Of course, the cost versus Consider first the design objectives which an

-. benefit of using any tool must be evaluated, organization should have when considering how a
As someone said, if the only tool you have is a workstation should ideally be used.

* hammer, it is surprising how many problems look



*Design Objectives Inexpensive printer close by and peripherals
for a Workstation Environment such as a laser printer, hard disk with

large storage, plotters connected to your
To be most effective, workstations should phone for all forms of communications
be used throughout an organization.

The next list is the software characteristics
qThe interface must be user friendly, which should be designed into a workstation

system. Although each of the itema could be
Certainly job specific software will be described in great detail this will not be done
needed and must be available shortly after for two reasons. First, since most readers of
introduction to the worker, this paper will have a general idea of what is

meant by each of the characteristics, the author

Good response time is essential, does not intend to create an argument on semantics.
Secondly, all of our definitions will be likely4

The hardware and software must be to change as we view new approaches to software

compatible with other equipment already development. Therefore this list is merely
in place. included to suggest the general characteristics

which should be considered.
The hardware and software must be expanda-
ble and upgradeable as new developments Software Characteristics
come on line. For A Workstation System

The user must be able to program in one or The operation must appear to the user to be
more languages but the user should not FRIENDLY.
have to program to use the equipment.

The system should appear to the user to Do
There must be software for office auto- Harder Tasks Simply.
mation such as: word, text, and compo-

sition processors; file organizer; infor- The system ought to remember what has been
mation retrieval system interface; done before using what is often referred
electronic mail; inventory control to as Intrip Syste.
modules; data communication links; data
base management systems; graphics To the extent that it is needed Help
presentations; ledger analysis packages; Features should be available.

etc. There ought to be effective ways to Allow
Since many different data baaes exist in the Sophisticated User to Nove Quickly ln-
an organization the system must be able to side the System.
access them.

The system should provide for Repeatable
Through network environments or whatever, Work with minimal user specification.
one should be able to share resources such
as peripherals. As the science of Artificial Intelligence

develops the workstation system should In-
The list of hardware ingredients which follows corporate some of the better features.
may be lacking. I do not claim any particular
wisdom here. Then too if we wait a week or two The workstation system should provide for
the list will probably change. Multitasking both in the CPU and on the -

display.
Some Hardware Ingredients Y'

For A Workstation The user should be able to develop User
Specified Procedures/Routines which can be

Full Bit-Napped Screen of sufficient size called up in the future.
to be read more than a foot or two away

3. SCENARIO OF RESEARCH ON A WORKSTATION
Good Resolution, color graphics both on
the screen and a graphics output device Consider for a moment how an engineer or a
(may be at a remote site) scientist might use a workstation environment to

solve a problem. The notion to keep in mind is
A simple keyboard that the tasks which I am describing can be

performed at one station. The researcher is 1
A cursor control device such as a mouse sitting at his/her desk. The researcher has

Nultwinow cree caabiitybeen confronted with a problem. The first thing
Multwinow cree caabiityyou might want to think about is to formulate

the initial concepts associated with a possible '9

Considerable ram perhaps 1 to 1.5 megabytes solution, organize and develop ideas, and save
those things for future use. (See Exhibit 1 for .. ,

Considerable local storage, 10-20 megabytes a list of tasks and-workstation tools to be used.)

.............................................................--.,"-..*A



You might use a word and text proceasor and an with atatistical graphics aa well.
idea processor. You will need a file organizer

to save all the ideas for the next steps. After completing the enalyses the researcher
will need to prepare some graphics for presen-I-.

wheel you might want to perform a literature statistical graphics package or perhaps in a
search using one of the several available in- graphics presentation package specifically
formation retrieval systems. Once the search designed for high resolution graphics. A ledger
is complete the results will be saved. At this analysis or spread sheet package can be used for
point you should be ready to formulate the summarizing the final accounting for the report.
proposed research objectives and prepare a draft We complete the written report on a word and text
including the budget and other financial impli- processor, develop slides for presentation of the
cations. The tools Involved in this step are results, and give the oral report to management
word and text processors, a financial modelor, throughout the corporation. The presentation

*and a spread sheet package. may be a real time "dog and pony" show on the CRT
screen to the various managers and colleagues

The draft is submitted via electronic mail for who need to know the results.
peer evaluation followed by a possible revision.
Once approval has been obtained it is necessary Finally the researcher saves all of the results
to check on the availability of the equipment in a file organizer for future reference. Sub-
and supplies to be used in the experiment. If sequently the researcher reads his mail and-
this information is not immediately at hand one discovers a new project awaiting him. Or per-
could use the inventory control sod order proces- haps the previous project needs to be studied
sing components of the workstation. Indeed, under new conditions. The point is, of course,
since others may wish to use the equipment, that the workstation environment can perform a
the requirements should be noted through the myriad of tasks--all accomplished at one loca-
network environment so others will not make claim tion. Note also that only a few of ? he tasks
on the equipment. involve statistical operations. The workstation

environment must allow a complex array of tasks
Using an experiment design package the researcher to be performed. From the user's point of view
is assisted in making final decisions about which the operation should appear to be blended togeth- 1
factors to use, the levels of those factors, and er. The resources used in one task should be
the type of design to be run. The hardware is available to other portions without great effort
interfaced with the appropriate instrumentation, on the part of the user.
the order of the experimental design is randomized
and the experiment is performed. 4. ADDITIONAL FEATURES FOR THE STATISTICAL

COMPONENTS
We should mention here that at several of these

*steps we do not expect immediate response from There are a few specific additional features
the system. For example, the time involved to which should be part of the statistical compo-
complete all experimental runs may be several nents of a workstation. These are in addition
days or weeks. The important thing to remember to those software characteristics discussed in
though is that we can expect that the user at section 2. The software must be user friendly
his workstation will be receiving information, both for the beginner and the experienced user.
when appropriate, on the progress of the experi- Many will experience their first use of sta-
mentation. tistical methods in a workstation environment.

It is therefore important that their experience
The data as received are stored in a data bases with statistical analyses be friendly. By this

*management system and verification procedures we mean that at whatever level of complexity,
are performed continuously. At various stages the operation of the workstation should appear
the meta data are input to the data bases to be straightforward.
management system. Nets data are essentially
all the non-numerical information associated Of course we expect that the statistical compo- L
with the data base that you would like to nents should offer comprehensive and complete

*remember. Everything you might record in a lab solutions for the task selected. The software
book which normally gets lost when you input the should be powerful. The statistical analyses

*results to the computer can be saved as mets should cover a wide range of types of situations.
*data. And of course we expect that the results should

be correct statistically and numerically.
The researcher completes the various data manipu-
lation operations such as handling missing values, Three special operations are quite important for1 1
transformations, sorting, merging, etc. most the statistical components in a workstation
likely in a data base management system. At this environment. First, the system should allow the

*point you are ready for appropriate statistical user to branch back up through the path of the
analyses including exploratory analyses on the analysis and choose another route. The system
data. There could be many steps involved here, must remember what has been done before and

*The process should be iterative and augmented allow the user to try new routines, Secondly,



the system should offer repeatable sessions in users will want to move around rapidly in this
which the user can request similar paths through software. The paper by Velleman and Lekowitz
the analysis with perhaps a different selection in these Proceedings, however, suggests that
of variables and/or subsets. And third, the even sophisticated users can use a mouse inter- IF
system should allow the user to customize his face more efficiently than a command language
or her own steps through the data analysis,.prah oersac ed ob odce

The equnceof oeraion an decsios wich on this topic but the preliminary results are
are made could be given a procedure name and encouraging.

requste suseqenty b tht nme.The ability to view and operate on multi-windows
Finally it is imperative that the statistical on the screen is essential. The windows will
and other components incorporate graphics into naturally overlap. Thus many different events

*every segment of the routines. In particular can be shown on the screen at the same time. We
the statistical componenifa should have graphics should be able to page through the windows. A
which are fine-tuned to the analyses and inte- data window will more than likely contain more
grated into all components of the software, information than can reasonably be displayed on
Furthermore, the user interface should most the screen. Paging is essential.

* likely be graphical in nature with pull-down
menus, pop-out windows, etc. In "The Visual The system ought to support multi-processing
Mind and the Macintosh", Benzon (11 describes which is visible on the screen. For example,
why he believes the visual mind is now recog- the results of an analysis might be displayed
nized as being so important in user interfacing, in one window while the user cycles through the

*While his article focuses on the Apple Macintosh data in another window, and a scattergram is
coaputer, most of his remarks would also apply created In another window, In addition we sight
to other operating systems and software as well, expect background processing to occur while .

*Indeed those vendors and software developers other operations are displayed on the screen. 1
* who do not make use of the left side/right aide

characteristics of the brain are missing an Other features Include a help operation without
*important way to intcrface with the user, tears. On some systems once you enter the help

sequence the system essentially sets aside the* ,

*5. ONE POSSIBLE SCREEN IMPLEMENTATION current operations and branches to some other
part of the program. You may have to recyle

Let us consider how the user interface for the through the entire operation again to get back
statistical components might be implemented in to where you were. Another feature which has
an integrated workstation. The hardware will already been mentioned would allow one to back
have to include a high resolution screen. A up the steps in the analysis, make changes, and
color screen would be helpful but Is not es- start down another path. Finally we require
sential. We will need to control the cursor user defined routines. The system should allow
with either a mouse or some other type of control- us to specify a particular sequence of events

*ler. The mouse is my preference at this time, and identify that sequence as ours.

There are several characteristics of the During the oral presentation of this topic, the
operating environment to be mentioned. The author mentioned that because he has been associ-
user should not have to remember a lot of ated with a project with Hewlett Packard that
commands to start the system. The start-up is not complete at this point and his wife is a
sequence is often a frustrating exercise for consultant for IBM, he decided to "show" one
most novice users. Of course it can be frus- possible implementation on a Macintosh computer-

*trating even to the experienced use if he/she the computer they have at home. All of the
must remember the sequence for several different characteristics such as pull-down menus and
machines. Typically, smaller machines are pop-out menus were described during the oral

*easier to use, but this is not always true, presentation. Another concept which was
described is an event window at the bottom of

We want to have simple, easy-to-understand the screen. In this window events are displayed
displays. in some of the packages we have been such as the time, date, elapsed time for
evaluating at CSU the initial display is very certain events, busy signal for disk I/0, and
difficult to understand. The operations ought status of operations such as multiprocessing of
to be simple enough so that the user does not computations with nonlinear regression. In ad-
need a manual. We like pull-down menus which dition, the author described several other
lead to pop-out menus. We have discovered that features such as how one might scroll through
most users like to have the ability to fill in various windows, enlarge or shrink windows, and
the answer blanks on a screen. One must have a telescope or magnify portions of a window.
fairly sophisticated computer to be able to move
a cursor around, fill in answers, and/or check 6. CHALLENGES FOR THE FUTURE
off various options. Up'to this point the
argument has been that you need to provide a The concern has been raised that many people in
command language interface for the more sophisti- the future may first learn about statistical
cated users. After all, the story goes, these methods on a workstation. Their first exposure



to comprehensive sets of statistical tools may have AT features. While the concept may be
be when they sit down at their workstation, plausible, the reality may make us wonder. Is .1

The idea is a little frightening. Assuming that it possible to encode the knowledge systems of
people will first encounter statistical methods a brilliant statistician such as John Tukey into
this way, it means that the quality of the sta- software so that the user will have the benefit
tistical software is paramount. The software of Tukey's help on the user's problem (smart
developers have a more important responsibility system)? And can the system carry the process
in workstation environments. And statisticians further so that even though the smart system
have a responsibility to make sure that the has not seen the user's problem before it will ~
software developers produce quality products, lead the user through decision-making processes?
Some might question why statisticians should be wow!
involved; after all, computer scientists will
more than likely be doing the software develop- 7. CONCLUSIONS
ment. Sure, the computer scientist will design
the systems and they ought to do so. However, Small computers will be increasingly involved
statisticians should help the computer scientist in all aspects of our lives. Our children will
in the following areas: in defining the depth, begin learning how to use computers in elemen-

*breadth, and completeness of the statistical tary school and can reasonably expect to use
coverage; determining the algorithms to be used them throughout their lives. Employees will use
for the computation; reviewing the user inter- computers and computer technology on the job.
face with regard to at least the terminology Indeed many employers may install identical
used; supplying the test data sets; and evalu- computers in their employees' homes so that they
ating the overall performance of the software, can follow up on good ideas even while they are
We must realize that there will be new forms of at home. Whether supplied by their employer or
statistical software in the future. One can not, most homes in the future will use computers
speculate that the way computer packages now for a wide range of tasks. We can expect that
interact with the user will be considered "old many tasks have not even been envisioned today.
fashioned" in three years or less. The computer revolution may not have even ar-

rived. Perhaps we ace only at the dawn of the
Statistical methods in the future will be revolution. We do not fully appreciate the
changing as well. Large data sets will be more place which computers will have in societies of
prevalent. Rapid arrival, on-line data col- the future.
lection will be commonplace. New types of data
analyses to accommodate large multivariate data There is every indication that statistical
sets will be needed.- We will no longer be methods will be even more important in the
satisfied with simply giving our clients future. The renewed emphasis on improving
analyses of variance tables. They will need quality and productivity is helping. Because
and expect far more from the statistics packages. everything we do can be thought of as a process

which needs continuous improvement, recog-
Many believe that there will be a dramatic nition of the proper use of statistical methods
emphasis on the use of good and insightful sta- should increase greatly. These are great times
tiatical graphics. Certainly the hardware can for statisticians. Statistical software will

*display the graphics. It will be up to the continue to proliferate and change. Some feel
developers to integrate statistical graphics that the software developers may help to lead
throughout the routines. The American Sta- statistical methods into the 21st century. 2
tistical Association will shortly have a new

*section of Statistcal Graphics. The statistics Workstations are but one result of high tech-
*profession obviously feels graphics are impor- nology which should affect our lives in a
*tant. Statisticians have a chance to "show" positive way. The statistical components in-

users of our methodology that statistics really corporated In these workstations would be impres-
can help. Statistical graphics may be our best sive. Statisticians need to get involved to
tool. make sure that this happens.

The supercomputers with various forms of parallel REFERENCES:
* processors may indeed change the type of problems

we consider to be statistical in nature. This [1] Benzon, W., The Visual Mind and the
*topic should receive more attention at the future Macintosh, Byte, January (1985), 113-130.

Interface Conferences.
Exhibit 1

Finally, one subject for the future which may Scenario of Research Done on a Workstation
affect how users do statistical methods is
Artificial Intelligence (AT). After asking Step Tasks Workstation Tools

* several people for their definitions of Al and
receiving somewhat different an '-rs from each, 1. Formulate initial Word & Text Processor..
someone finally said that a progim which could concept, organize (WTP), Idea Processor
recognize information never specifically program- & develop ideas, (IP) & File organizer
med and draw inferences and conclusions would & save for future (FO)

.%I
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2. Perform literature Information Retrieval
search & save Systems and FO

3. Formulate proposed WTP, Financial
research objectives Modeler & Spread-
& prepare draft, sheet package 6
including financial
implications & budget

4. Submit to peers for Electronic Mail &

evaluation, criti- WTO
cism & revise -

5. Check on availabil- Inventory Control &
ity of equipment Order Processing
to be used

6. Decide on appropri- Exper. Design
ate experimental Routines
design, etc.

7. Interface the Data Comm. Linkage
instrumentation, Rand. and Data Base
randomize the runs, Management systems
run exp., & store ,(DBMS) .
results in data base

8. Perform any number DBMS
of data verification
procedures

9. Input Meta data to DBMS
data base

10. Complete data mani- DBMS or Stat. Library
operations such as
MV's, transform
sorting, merging,
etc.

11. Perform appropriate SL which should
stat. analysis in- include many Stat.
cluding EDA. Note: Graphics (SG)
Many steps involved
here

12. Prepare graphics SG & Graphics Presen-
for presentation tation Package
results -V'

13. Prepare final Ledger analysis
accounting summary package & spread-
of cost vs benefits sheet package

14. Complete written Word & text processor
report on results

15. Develop slides for Graphics Presentation

oral presentation
of results

16. Give oral report to Real Time Oral "Dog
management through- & Pony Show" on CRT
out corporation

17. Save all results File Organizer
for future

18. Begin new project Electronic Mail &
or read mail to then go to step 1
discover what the
boss wants next

-..-- ,- . ....... .. .. . .. .. .. . .. .. .
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Statistical Software, Graphics and
Future Workstations for Data Analysis

Richard A. Becker

John M. Chambers

Allan R. Wilks

A T& T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The personal workstation is rapidly emerging as a powerful tool for conducting data analysis, particularly in
contrast to either the large mainframe or the small personal computer. This talk describes some user experiences
in working with a variety of workstations and in providing data analysis software for them, especially for
graphical display of data. The discussion includes the present state and desirable future evolution of
workstations from the viewpoint of statistical applications.

1. A Computer for Every Data Analyst processor, at least 1 megabyte of main memory,
Recent trends in computer technology have caused and disk storage capacity in the tens of megabytes.
drastic changes in the price of hardware. At Also, workstations normally have modern operating

present, a workstation computer, may be purchased systems and sophisticated software. They are

for approximately S$15,000, and the trend in price is capable of running the application systems and userfor~~~rorm writtemnel $15000 mandam thetred-ispicersed
still definitely downward: soon such machines will programs written for mainframe time-shared

computers, without the competition for resources
be priced near $5,000. With prices at this level, it
will not be long before any serious data analyst will atio use dot suffed to inequaiesbeabe o for apesoa wrktaio.Workstation users do not suffer due to inadequacies ;-
be able to afford a personal workstation, of hardware or software. In fact, the workstation

When we speak of a workstation, we mean opens new opportunities for the development of an
something quite different from the type of machine environment which emphasizes the human
currently called a "personal computer". The interface.
"personal computer" is generally characterized by Of course, it is appropriate to ask "Why not a
slow processor speed, limited internal storage time-shared mainframe?" The answer to this is 4:
capacity, and small amounts of external storage. that the workstation gives the analyst control over
At present, most of these machines are based upon the computing resources necessary for the job. The
processors with either 8-bit or 16-bit architectures; price of a mainframe typically means that it is
this naturally limits the amount of memory that the controlled by a group that may not be responsive to
machine can address. The current personal the need for modern data analytic software. Also,machines are also limited in software. Although sicthpresoishadwkfrohrues .-

there are numerous small programs for these since w the processor is shared, work for other users
machines, large, integrated systems are not may interfere with the processing power needed for

machies, lrgedata analysis.
normally present. Typically, they have very
primitive operating systems, and because of The Human Interface
hardware constraints, the operator is often forced to There are several characteristics of the workstation
load and unload programs manually as the need which have a major impact on its human interface.
arises. These are high-resolution display devices, provision

The personal workstation is very different, indeed, for user control of multiple processes, interaction,
The workstation is a "real computer", not unlike and networking. The display is often a bitmap
the super-mini machines designed for scientific raster-scan device, with resolution of approximately
processing. A workstation typically has a 32-bit 100 pixels per inch. This relatively high resolution - -

7
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*enables the display to produce approximations to like the bootstrap, in which thousands of similar
typeset documents, with various fonts and point analyses may be carried out in order to find
sizes. It also can produce quite satisfactory confidence limits, are likely to be more common. In
graphical displays and, since the local processor can general, simulation techniques are much more likely
change the bitmap rapidly, the display can give the to be used.
appearance of continuous motion. However, perhaps the more important contribution
One of the major uses of such a display device of the local processing power, is that it will
involves the creation of "windows" on the screen. encourage the analyst to consider more analyses.

-~Each window acts as an independent connection to Data analysis is a process that does not have one
the processor, much as multiple timesharing fixed answer; often it is important to come up with
terminals could be running on a large, shared several different views of the same data. When the
machine. Any particular window can run a process analyst is able to look at the data from many
that is tailored to a specific task, such as producing different viewpoints, without having to incur large
graphical displays, text editing, or document processing costs or to share his machine with others

*display. (and suffer degraded performance), the quality of
the analysis is likely to improve.

The user has control over the workstation not only
through a conventional keyboard, but also through
a visual interface. Dynamic interaction with the 3.Gahs
display is carried out through a mouse (or touch No longer will computer graphics be limited to
screen, tablet, light pen, etc.) that enables the user those able to afford expensive equipment. With the
to point at the display, draw, and make menu advent of workstations, every user will have graphic
selections. The combination of pointing device and capabilities. Graphical techniques have long been

* .good, fast graphics makes menu-style interfaces to known as powerful aids to data analysis. The
application software much more attractive, human mind is far superior to any computer

software in the area of pattern recognition. When
Because certain peripheral computer facilities are shown a scatter plot, a human data analyst can

expesiv or nfrquenly sedworstatonsuse recognize curvature, clustering, and a host of other
local area networks to provide access to them. At itrsigcaatrsiso h aadslyd

one etrem, wokstaionscan e usd asvery The combination of interactive graphic displays . '

intelligent terminals to current mainframe with an interactive computing environment will
compuers.provide a synergistic effect, leading again to better

Statistical Computing in the New Environment data analysis.

How will a workstation environment affect Perhaps a less obvious benefit of graphics will be
*statistical computing? Major impacts will be made the ability of using graphical symbols to aid user

by: interaction. Just as international road signs use
* oa oe pictures to guide automobile drivers, so will

* Loal Pwercomputers be able to use non-verbal graphic
* Graphics images, known as icons, to guide data analysts.

* DyamicDispays4. Dynamic Displays

* Mutipl WinowsStatic graphical displays have always been available
e Interaction to people who want to look at data. Many of the

* Networkingdisplays common today were invented in past -

centuries. Much of the research into new methods
2. Lcal owerof displaying data involves dynamically changing

pictures. This can involve, for example, movie-like
The availability of large amounts of essentially free sequences of views of a point-cloud. A good
computing power is likely to change the way that example of such research is described in PRIM9
data analysis is done. Once a workstation is (Fisherkeller, 1974), ORION (Friedman, 1982),
available, it costs nothing to have it computing. and PRIMH (Donoho, 1982).
Therefore more processor intensive data analytic AtT& BelLbroiswhaexpimnd
techniques are likely to be attempted. Techniques wt ubro hs yai ipas oto

witha nmberof hes dynmicdislays Mot o



this research was done on a Teletype 5620 Dot- can be provided; menus can "pop-up" on the
Mapped Display terminal (which is basically a display until the user makes a selection, and then
diskless workstation). We have rotating point can disappear; icons can be used for non-verbal I

*clouds, a straightedge display that moves under interaction. Multiple windows allow users to
control of the mouse, dynamic display of identifiers explore on-line documentation or pursue any other
on a scatterplot, and a more advanced technique for background computing they like, without
multivariate data, known as "brushing" (see Becker interrupting or removing from the display the

*and Cleveland, 1984). current interaction.

Dynamic displays can also be used for the 7.Nwokn
* ~~~presentation of several distinct but related pictures 7.Nwokn

in alternation, the process called alternagraphics by Networking is one method for providing a number
Tukey (1982). Given a multi-plane graphics color of workstations with shared resources. However,
display terminal with a color map (such as the networking facilities will do much more for the
Advanced Electronics Design Model 512), it is statistician. Workstation networks are often 5
possible to rapidly cycle through pre-computed configured as in Exhibit 1.
scenes. Such displays are not slowed down by their
complexity, but have a limited number of views and
precomputation overhead. We have used this
technique to show rotation of 3-dimensional
surfaces with perspective generated by stereo
glasses. We have also looked at the behavior ofToOhrNt s
smoothers as a locality parameter was varied.anMchesr

Another use of local processing power in
conjunction with dynamic displays is in fast- SharedSae
changing displays. For example, it should be Printer Ds

possible to plot the data in a univariate regression ~ ~
problem and to interactively move, delete, or add
points to the plot and to see the regression line Workstations

continuously updated. We could also choose power
transformations for the x- and y- variables on a
scatter plot by observing the picture as the
transformation powers were changed under control
of a graphical input device.

5. Multiple Windows

Since workstations allow the user to control
separate activities from separate windows, a
number of difficulties of current statistical software
melt away. For example, it becomes easy to allow Data transmissions around the local network are
the user to interact with the statistical software in typically very fast, often several megabits per
one window (either through a keyboard or menus), second. At these speeds, users can share data,.-

*to see graphical results in another window, and to documentation and software without experiencing
a'get on-line assistance at the same time in another any loss in apparent performance because a

window. The size, shape, and position of the particular file is actually at a remote location. As
windows can reflect the users wishes, and they can the figure suggests, relatively expensive and .-

be rearranged at any time. infrequently used resources (fast printers, hardcopy
plotters, very large disks, special processors) can be

6. Interactioni connected to the network and used by all the
Sinc wokstaion norall proidehardareand workstations, without seriously slowing down access

software facilities for user interaction, there is to them. The ability to connect the local network
much flexibility in the face that statistical software tothrnwrkadtoterypsfcmuig
presents to the user. Dynamically changing menus eniom tisprcualiprat.Ursed

not sever their links to the conventional mainframe
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computing world, from which much of the data for The primary goal for S is to allow users to perform
analysis will continue to come. good data analysis. Judging from the experience of

some thousands of users, S satisfies this goal quite
The personal effects of the networking environment well. However, in order for people to be able to use
are at least as important as the technical effects. S to analyze data, they must have access to S.
Electronic communication, both local and remote, is Hence it is desirable to have S readily available, on

one of the most fundamental changes being made H en e t appoprae h adw are. on

by the current computer revolution. Workstations inexpensive but appropriate hardware.

linked by local and remote networks give the user Luckily, the general trend in computer hardware is
full access to this communication. For example, for more power at less cost, and the current
the UNIX' system provides both one-to-one selection of professional workstations is the
communication (e.g., mail and write commands) manifestation of this trend. Modern workstations
and broadcast communication (news and netnews). combine computing power, large amounts of
The style of communication stimulated by these addressable memory, and quick and consistent
facilities is qualitatively different from traditional response time, and often come with the UNIX
paper communication, emphasizing rapid response operating system. Many of these workstations also
and brief documents. In many ways it is more have provision for bitmap graphic displays. These
communication in contrast to the publication mode machines not only provide an excellent environment
typical of paper documents. The publication for S, but they also have the potential for providing '"-
process itself is also mightily changed in the better understanding of data through dynamic
workstation environment: the hardware and user graphic displays. These new UNIX-based
interface facilities allow authors to interact with the workstations are a desirable environment for S
editing, design and production process much more because of their low price, good graphics (bitmap,
directly. dynamic), and responsiveness. We now have

experimented with S on the following workstations:
Modern Software for Data Analysis Sun, Hewlett-Packard 9000, AT&T 3B2, and
Once workstation hardware is available, it becomes Wicat. The machines run a variety of UNIX
necessary to think of appropriate software for the systems, including AT&T System V and Berkeley
new environment. Of course, it will not be 4.2BSD.
sufficient to use old batch software inherited from

We have had experience in porting S to thethe 1960s, or to think of the display screen as a fast Wi ah ien in of t UNIX
line printer. In addition, it must be remembered system
that hardware evolution will continue, and hence sysem
the software must be adaptable to tomorrow's Hardware Operating System
hardware.

Most people think of statistical computations such HP Series 200 HP-UX (System 1i1)
as regression or transformations when thinking of (MC68000)
statistical computing. However, there is much SUN 100 (MC68010) 4.2BSD
more involved than that. The software must be 3B2-300 (WE32000) System V
able to store and retrieve data, work with a wide Wicat 150 (MC68000) 7th Edition,
variety of data structures, and provide interactive System V
graphics on various graphical devices (which, like Perkin-Elmer 32/30 7th Edition
workstations, have proliferated rapidly and are HP Series 500 HP-UX
continually undergoing change). (HP 32-bit chip) (System ii!)

S is a system which is meant to fulfill the needs for Apollo AEGIS
modern data analysis software. It runs under a
number of versions of the UNIX operating system IBM 370 UNIX/370 .. •

on a variety of hardware. S is described in a recent DEC VAX 11/780 32V
book by Becker and Chambers (1984). DEC PDP 11/70, 11/45 7th Edition

Pyramid System V, 4.2BSD
I. UNIX is a Trademark of AT&T Bell Laboratories. Ridge 4.2BSD

DEC VAX 11/780, 750 BSD 4.1,
4.1c, 4.2
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DEC VAX 11/780 System III, V "Brushing a Scatterplot Matrix: High Interaction
DEC VAX 11/780, 750 8th Edition Graphical Methods for Analyzing Multidimensional IF
AT&T 3B320S System V Data", submitted for publication, 1984.

When we first wrote S for the UNIX system, one of David L. Donoho, Peter J. Huber, Ernesto Ramos,
the major decisions we made was the basic choice and H. Mathis Thoma (1982), "Kinematic display
of programming language. Because of the large of multivariate data", Proceedings of the Third
amount of FORTRAN computational code already Annual Conference and Exposition of the National
available, we decided to use that language. Computer Graphics Association, 1, 393-400.
However, we decided that the primitive operations
of the S system should be implemented in C. C Mary Ann Fisherkeller, Jerome H. Friedman, and
provides the natural linkage with the underlying John W. Tukey (1974), "PRIM-9: An interactive
UNIX operating system calls. multidimensional data display and analysis system",

ConclsionsPublication 1408, Stanford Linear Accelerator
Center.

The statistical computing arena is undergoing a
quiet revolution. In the near future, increased Jerome H. Friedman and Werner Stuetzle (1983),
computing power, good graphics and new modes of "Hardware for Kinematic Statistical Graphics", PP.
human interaction will be available to a greatly 163-169, Comp. Sci. & Slat.: Proc. of the 15th
increased population of potential users of statistical Symp. on the Interface, James Gentle, ed., North

',systems. Such users will benefit, and indeed Holland.
require, high-quality on-line help in using statistical
software. Fortunately, the personal workstation is John W. Tukey (1982), "Another look at the
well suited to provide such help. Its resources are future," Comp. Sci. & Stat.: Proc. of the 14th
essentially free to the user, encouraging the Symp. on the Interface, Springer-Verlag, New
approach that as much effort as needed should be York.
spent by the computer in presenting data
dynamically and in supporting interaction with the
user.

The statistician will also find many new
opportunities in such an environment. The
computer power should greatly increase the use of
simulation as a routine tool, whenever the behavior
of a model or estimate needs to be studied. In the
choice of theoretical work in statistics, as well, the
statistician with a real concern for the healthy
practice of data analysis will find new challenges in
providing support for this new user population. For
example, graphical presentation of data, diagnostics
of value to the non-professional analyst and more
advanced techniques such as expert systems arce all
exciting possibilities in the new environment.
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Methods for Multidimensional Scaling

Douglas B. Clarksonl and James E. Gentle

IMSL, Inc.

Multidimensional scaling is an often used technique with many similarities to
factor analysis. This paper discusses and compares several models for multidimensional

*scaling, and gives some generalizations of some of these models. It proposes new (to
multidimensionlal scaling) fitting criteria, and compares the results obtained by their

use. Some solutions to problems encountered in the optimization algorithms are

discussed. Finally, some statistical implications of multidimensional scaling models

are given.

1. Introduction The data is an example of ordinal dissimilarity
data. In the general MDS problem, the data can
be categorical, ordinal, interval, or ratio.

In te geeralAlso, since the ranks in one row have no direct
Inth gnealmultidimensional scaling (MDS) relationship to the ranks in a second row, each

problem the data consists of one or more dis- row represents a different stratum (or condition- P
similarity matrices, where a dissimilarity is aiygop ntesneta ismlrte

insome mese, ofe distance and e the atri ecve in the two rows cannot be compared. In the
in sme ense th disancs bewee theobjcts general MDS problem, more than one dissimilarity

(or stimuli) considered. An easy example of mti a eosreadasrtmcnb

cisuc aomtrix is the mileage distances between a row of a dissimilarity matrix, an entire
ciie ftnfound on road maps. Here, the dissimilarity matrix, or all of the data.

distances between cities is the dissimilarity These strata correspond to what is called row
measure, and the MDS problem is to locate the conditional, matrix conditional, or unconditional
cites in a two (or three) dimensional space data, respectively.
based upon these distances. As a second,
more complicated example, consider the purely Thidanmutiesoalclngstooae

ficitius atain abl 1.In this example, the objects in a -t-dimensionsl Euclidean space in
stimuli represent 7 stores and the dissimilarity such a manner that the agreement between the
is a ranking of the distances in each row of the observed dissimilarties and the distances

distances mtherix athrthnuinkhsata predicted by the location of the objects in the
distnce, te rnksof the distances are used space is in some sense optimal. In this example,

as the dissimilarity measure. From row 1 of the the usual Euclidean distance given by
table, one can see that store 3 is closest to
store 1, store 2 Is second closest to store 1,
store 5 is third closest, etc. T

6. 2
k=1 (i jk)

Tmble I Is used, where Xik is the coordinate of the i-th

object in the k-th of -t dimensions in the
Store Distances Euclidean space. (The matrix consisting of the

Store Ranks Xik is called the configuration matrix.)

Stor 1 3 5 '~ Generally, a criterion function of some form is

1 0 2 1 5 3 4J 6 used to obtain an optimal solution. In this
2 4 0 3 1 2 5 6 case, the criterion function is given by: F
3 1 2 0 3 4 5 6
4 3 1 4 0 2 5 6 n 2
5 4 1 5 2 0 3 6 1 (6- 6 )
6 2 3 4 5 1 0 6 i j_1 :. I.

7 1 4 2 6 5 3 0q n *2

3 06w
n 2j

%



where n is the number of stimuli, 6* denotes Table 2

wh optimal dissimilarities, called dispar-

ities (see below), and 6. is the predicted 'The Configuration X

distance given above.
0 ~~Stimulus XI X;
The criterion function is optimized with respect 103 01

Ve o both the configuration, through 6, and the 2 -0.24 -0.86
dsaiis6*. If the data is ratio or Interval, 3 0.58 -0.96

the disparities 6' are the observed distances 4-1.07 -0.65
and there is no optimization with respect to 6*. 5 -1.00 0.78
In ordinal data the disparities are the predicted 6 -0.15 1.24!-.-
dissimilarities, where the prediction is made 7 1.51 0.57
via a monotonic regression of the ranks of the
observed data on the predicted distances 6

*within each stratum. Finally, in categorical
data, the disparities 6 *are the average of all observed. The differences in the location of

*predicted distances 6 which have the same observed the stores in these two figures come about
dissimilarity within a stratum, because of the lack of uniqueness of the estimated

configuration in ordinal (or categorical)
*The numerator in the above expression Is the data. (For that matter, note that the store

*least squares criterion. The denominator Is a locations given in Figure 1 are not unique, as
normalizing factor which prevents the solution an infinite number of such plots could have
from becoming degenerate in ordinal (or categ- given rise to the same rankings in Table 1 , even

*orical) data (a different criterion might be after eliminating variation due to reflections
* ~~~used in ratio and interval data). The denominator adrtto.

Is required here because the optimization Is
with respect to both 6 and 6*. If the denominator
were not present, q could be made as small as
desired simply by simultaneously scaling both 6 Figure 1
and 6*.

The Estimated Configuration
As an example of the monotonic regression used
in ordinal data, consider the following table:

Ranks for Store 
7 

14

Soe 1 3 6 2 5 14+
Rak 1 2 3 14 5 6 0.60
6 .69 .65 .144 1.10 1 .07 1.23
6* .59 .59 .59 1.08 1.08 1.23

-0.20
In this table the original rankings of the
dissimilarities for each store compared to the
ranks for store 7 are given in the second row. +

(The data is presented In Its original rank+
order.) Using the estimated configuration, the -1.00+
distances in the third row are computed. In -. 0II
computing the disparities, note that in the -11 0.0 090 19

third row .65 is less than .69, .144 is less than
.65, and 1.07 Is less than 1.10. Since the

*disparities must be in the same rank order as The fact that the estimated configuration in
*the observed dissimilarities in the second row, Figure 2 is not unique (even after allowing for

the monotonic regression averages the elements in changes in sign and for rotations) can be seen
the third row as required In order to preserve the as follows: If the fit is perfect, then the

* ~~~originally observed ordering in the disparities nmrtri . n h eoiao a o,
6* given in the fourth row, effect. One can then change the configuration

in such a manner that rankings in the ordering
When the criterion function is optimized, the of the distances are unchanged. The monotonic
resulting configuration is given in Table 2. A regression will then change the disparities so

* plot of these results is given in Figure 1,~ with that they are Qxactly equal to the new distances,
*a plot of the store locations which gave rise to and the numerator in the criterion function

*the rankings in Table 1 presented in Figure 2. remains 0.0.
In comparing these figures note that the scale

% is meaningless since no distances were actually



Figure 2 the user to make various assumptions about the -'

distribution of the observed dissimilarities.
This is clearly-most important in ratio or
interval data, but it also has effects in

The Actual Store Locations ordinal and categorical data, primarily through

the weights wh. Since least squares and maximum 4_

likelihood estimates are equivalent (in one
2.00 stratum) when the distribution of the transformed I W,

random variables are normal, the function f may
be used as a transformation to normality. This
is equivalent to using f to obtain homogeneous

variances within each stratum.

Choices for f in MSCAL are:

0.00 + + + +

x
2

+ f(x) = x).
log(x).

-2.00 If one believes that squared distances have
- I -constant variance (and are approximately normally

-2.00 0.00 2.00 distributed), then f(x)=x should be used.
Similarly, f(x) - x, or f(x) - log(x) should be
used if these transformations yield constant

In section 2 the general criterion function variance.

(and thus, the model) used by subroutine MSCAL
in the IMSL library is described, along with The squared transformation is the transformation

possible generalizations. (Subroutine MSCAL used in the ALSCAL program of Takane, Young, and

will be released in the next edition of the DeLeeuw (1977), while distances are used in
libraries.) Section 3 describes the methods MULTISCALE (Ramsey, (1983)), and KYST (Kruskal,

used for fitting the model, while section four Young, and Seery (1973)), among others, and log

gives a more complicated example. distances are allowed in MULTISCALE.

The Distance Models

2. The General Criterion Function
The models for the distances 

6
ijm are equivalent

to those used in ALSCAL. They are given as
The general criterion function in subroutine follows:

MSCAL is given as follows:

The Euclidean model:
h : h" If(6ijm) - h -bhrnlj~ p 6 T _i Xjk)2 : :2

2 2
-

5h6 b f( 12k
h l.Jh . im j k=1 ik .j-.

where wh depends upon the f(6ijm) in the h-th The individual differences model:

stratum, h indexes the strata, f is a trans- T

formation discussed below, 2h and bh are constants X ) 2
to be estimated in some models, m indexes the un 1 mk(ik - kk-1

s,?bjects and will depend upon I, j, and h
according to the stratification used, and p where Wmk is the weight on the k-th dimension for

allows for Lp estimates other than least squares the m-th subject.

to be used in the criterion function. (The most
likely values for p are 2.0 for least squares The stimulus weighted model:
and 1.0 for least absolute value.)

2 2
Nul[ ind Sarle (1982) also suggestcd a criterion 6 jm  S ik(Xik - X •
function Involving p-th power estimates for use k.1
with ratio and interval data. MSCAL allows

citegorical and ordinal data as well as ratio and where Sik is the weight on the k-th dimension for
interval, the i-th stimulus.

mie furction f in the criterion function allows

I "-"-'-"-" , % , o - . .-.- ,-. .. ',' '." - - .-.. .- % ' ,'.j ., ". .. % ". " . . '. . " -, . . . -,• -,-o. ". ,
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The stimulus weighted individual differences (1977). For the configuration this amounts to
model: obtaining the average of the product moments

matrices (double centering the dissimilarities),
62 T _ Xjk)2 computing the t' largest eigenvectors of this
i 1Jm I Wmk' Sik(X ik -'jk' matrix, and multiplying by the square root

of the matrix of eigenvalues. When subject

O r s e d aF e pweights are required, the method of Schonemann .,'

Other distance models are possible. For example, as modified by Young, Takane, and Lewyckyj
instead of a weighted space, one could allow a (1978) is used. Finally, when stimulus weights
rotation of each individual's coordinate axis. are required, a multiple regression method in
This yields the IDIOSCALE model of Carroll and conjunction with the method of Schonemann
Chang (1970). Additionally, one could allow for is employed.
asymmetric models via the skew symmetric matrices
of Weeks and Bentler (1982). Future refinements
of the MSCAL subroutine may allow for such After the initial estimates are obtained, a
refinements. modified Gauss-Newton algorithm is used to obtain

estimates of most parameters. In the multidimen-

The Strata Weights sional scaling models discussed here, this
amounts to iteratively reweighted least squares. -

In metric scaling, strata weights are used to To speed convergence, the initial iterations are

weight the observations within a stratum. In performed on subsets of the parameters, while
this case, weights which are inversely proport- in the final iterations all parameters but the
ional to the variances are preferred because disparities are optimized simultaneously.
such weights lead to normal distribution theory In all iterations, optimal values for the
maximum likelihood estimates. Thus, in metric disparities are computed via a secant based
scaling, one would use method discussed later. 1 "

All parameters appearing in the general criterion
-1 f ( function do not have to be used in the multi-

wh = ''ijm - nh dimensional scaling. Thus, with some exceptions,

the presence of the subject weights W, the
stimulus weights S, the scaling factor bh, and

where wh is the weight in the h-th stratum, the the additive constant ah, is optional. Moreover,
sum is over all observations in the stratum, and any parameter matrix (including the configuration
nh is the number of observation in the stratum, matrix X) can be fixed in the optimization

procedure. (The disparities are fixed by
In nonmetric scaling, because the criterion declaring the data to be interval or ratio data.)
function is minimized with respect to both 6 and
6* the criterion function is degenerate unless The initial iterations proceed as follows:
strata weights are used as a normalizing factor.
An optimum criterion value of zero could always 1. In nonmetric scaling, the disparities
be obtained without this normalization. In most estimates 6* are computed within each strata
multidimensional scaling programs, normalization assuming that all other parameters are fixed.
is provided by the use of one of two possible The estimates of ah and bh within each stratum
weights proposed by Kruskal (1964). These are also computed at this time.

weights are given by:
2. The optimal configuration estimates (X)

h Jf(6ijm)I are computed.
h j

3. The optimal subject weights estimates

(W) are computed (one subject at a time).

If(a )-F(6* IWh £ ijm  . .. 4. The optimal stimulus weights (S) are
computed.

where the sum is over the observations in the
h-th stratum, and where T(6* ) is the average When the maximum change in any parameter is less
h- the tratum, andnwhere tratu) than a user specified constant (1O0.OEPS), the
of the disparities in ths stratum, iterative method changes. In the iterations at

this point, steps 2, 3, and 4 above are combined
so that optimal estimates of X, W, and S are .

3. Fitting trm Inodel obtained simultaneously. (Note that in metric
scaling, the Hessian for all parameters is
computed. The inverse of this matrix is commonly

Initial estimates ef ail parasetera are obtained used as an estimate of the variancecovariance

vii the siane ietnods which are employed in the matrix of the parameters. Some additional uses

ALoCAI. program of Young, Takan-, and DeLeuw of this matrix are discussed later.)

......................................
A. *_



Convergence Is said to have occurred when the within each stratum is transformed to: "

change in any parameter from one iteration to 1- "Z

the next is less than a user specified constant q = bYk - bf(6()
p

- (Ykl p -)

The Lp Gauss-Newton Algorithm where b is the scaling parameter b h for this "'''

stratum (ah is not used), and A Is the Lagrange"--'..
As stated earlier, a modified Gauss-Newton mlile -.

algorithm is used in the estimation of all
parameters but the disparities (and the parameters Within each stratum the criterion function mF-
ah ana bh). This algorithm, discussed by Merle Involves parameters Y(k), b, and A In this phase J

a n d p ~ t h ( 1 9 ) , s e s i t e r t i v e y r w e l g t e do f t h e o p t i m i z a t i o n . B e c a u s e o f t h e m o n o t o n i c- -: .
least squares on the criterion function. In restrictions on the Y(k), it Is not easily
discussing this algorithm, first rewrite the possible to use the usual Newton-Baphson tech- " '

crtro ucina olw:niques on all parameters simultaneously. -.
Because of A and the second term in the criterion. '-
function, simple modification of the usual

-h-l(~jm ah bh f(d ijm)l 
2  

monotone regression techniques may not be
q h f6J) a h employed. The following algorithm, while -

*~- sometimes slow to converge, seems to yield the
i ,j h lf ( 6 ij m  a a -  b hx f ( 6 i m 

2 -

, j j optimal estimates (Kuhn-Tucker theory guarantees
that the estimates are optimal If convergence

Least squares is then used on a linearization of ocus)

the parameters in 6ij m to obtain the estimates. 1. Set A and b to 0.0. '"
In this least squares estimation, it is assumed 2. Estimate Y(k) for the criterion q holding
that h and the denominator of q are fixed. A and b fixed. ~
(I.e., for each observation, wh and the denom- 3. Estimate b. ,' '
inator of q are combined to yield an observation 4 siae . '

weigt whch s fied wth espet tothe5. If the change in any parameter from one"'"
"

iteration.) The only problem occurs when p<2 iteration to the next is greater than ,[-
and the denominator is zero, at which time aEPobaktsep2-.

EPS,~~.. gobaktosep2

division by zero would occur. In this situation,"...
the denominator is set to 0.001, and the calcul- In step 2 a secant algorithm is used to compute
ations then proceed as usual. each isotonic parameter Y(k) based upon the

observations f(6(k)) associated with the param-
Estimatin the Disparities eter. The Y(k) are made monotone by restricting

all y's which would otherwise violate the
s. Ordinal data monotonic restriction to be equal. This has the

-'" effect of increasing the number of observationsAs was discussed earlier, in least squares MDS which are used in the Lp location estimate of
lgmonotonic regressio n e the computation the restricted parameters. For example, the

of the disparities In ordinal data. Because p-th monotonichty restrictions may require that the
power estimates are computed, these methods ranke transformed disparities Y(2) through Y
cannot be used (when p is not 2.0), because they bf e optimization. Becu e the mntic
would not yield optimal estimates. A severely of these 6 parameters as the Lp location estimate
modified monotniion must be used o the transformed distances M(2)) through
instead. Within each stratum the criterion f(6(7))

function is given bys m ifu

In step 3, a secant algorithm for fixed Y() andly(k ) -f('(k)) 
p  

is used. The computation of In step 4 isguaan
adirect, and is obtained by setting the derivative

theparmeersi 
p 
tSof q with respect to each Y(k) equal to zero, and

In then summing over all possible Y(k) qholdin

where Y(k) 
=

f(64k)), and k is the rank of the The algorithm seems to converge for all values of -

observed dissimilarity in its stratum . (k is p in the interval [1,2]. Convergence is slowest".-
enclosed In parenthesis to emphasize this for p near 1 and is fastest at p-2.
ranking.) In this equation, the Y(k) are all 3 Eta b
parameters, whil e in to yie of the optmiz- II. Categorical data
ation, it is assumed that the 6(k )  are fixed. 5 eit f
The mton ic assumption In ordinal data requires In categorical data the p-th power estimate of
that the y() 

< 
Y2) Yoi ) o 

< 
y(s), where s location is used on t ransformed distances as

is the number f obser vations in-he stratum. the disparty estimate for all observations with
the same observed dssomilarity within each

Using Lagrange multipliers the criterion function stratum. A secant algorithm is used to compute

effec of ncresingthe nmberof oservtion

Aswsdicsederiri eatsuae-..wiharsd.nteL-lctinetiaeo
.monotonic rersini used-. - in the computation the. restricte paraeter . -forexapl, the, , ,
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the p-th power location estimate. Table 3

Case Analysis Wine Tasting Data

Because the Hessian is computed in full in metric Wine 1 2 3 4 5 6 7 8 9
scaling, a case analysis (also called a residual
analysis) can be performed. Clearly, one 1 0 1 2 5 6 3 7 8 4

quantity of Interest for each observed dissimil- 2 1 0 2 4 3 8 5 7 6

arity is its residual. Some measure of influence 3 1 8 0 4 7 5 3 2 6

may also be of interest, as well the observation 4 7 2 5 0 1 3 6 4 8

weight and its standardized residual. These5 2 8 4 6 0 1 7 5 3
statistics may be computed as follows: 6 6 7 5 3 1 0 4 8 27 448 1 5 2 7 0 3 6 

8 7 2 8 5 6 1 4 0 3

1. Compute the observation weight and 9 3 1 4 8 7 5 2 6 0

residual in the usual manner.

2. Compute the influences as follows: Let I
giJm denote the row vector of weighted partial
derivatives of the ah + bh x f(

6
ijm) with respect

to the parameters ah, bh, and all -irameters in
6
ijm, and let G denote the maL ix of these

partial derivatives. Compute the influences (or
leverages) as the diagonal elements of the matrix When a multidimensional scaling analysis of the

G(GG)-IG'. data is performed using least squares as the
criterion function, and the individual differences

3. The studentized residual is given as: model for the distances, the resulting criterion
function is given as follows for each of 1 ,
2, 3, and 4 dimensions. %

r - e/SQRT(MSE-(I-h))

where e is the residual, h is the leverage, and T Criterion
MSE is the (weighted) mean square error estimate 1 12.599

computed via the criterion function and adjusted 2 4.857

for the number of parameters estimated. 3 3.425 I_4 1.287 :!

4. An Example
Because there is a large decrease in the criterion
function from I to 2 dimensions, and then a

As a second example of ordinal row conditional leveling off at 2, 3, and 4 dimensions, two

dissimilarity data, consider the matrix In Table dimensions are retained.

3 in which nine wines are judged with respect to
their dissimilarity by one of nine people. The
data consists of nine such matrices, one for Figure 3
each of the nine judges Each person ranked the
dissimilarity of the remaining eight wines with The Derived Wine Configuration

the row wine. Thus the ij element in Table 3
gives the ranked dissimilarity of the J-th to
the i-th wine, where ranking is within each 1.90

row. Thus, in row I, wine 2 is judged most + Gallo Cabernet
similar to wine 1 in this table, while wine 8 is + Ducru + Ridge Zin

judged least similar. The study was blind in the
sense that no individual knew the name of the 0.60
wine being tasted. + Mont. Zin

+ Lafite Roth + Gallo Burg

-0.70 + Mondavi Ell

+ Gallo Hearty
+ Premiat

-2.40 -0.80 0.80 2.40

Li-°



Figure 4 The meaning of a residual analysis in nonmetric
data Is not well understood, however. In such.-

The Judges' Weights data, because of the monotonic regression, the
residuals may not be meaningful. Since the

* leverages also depend upon the residuals, (and

% 1.20 - + in any event do not include information in %
+ the disparity derivatives) they may not be

+ + meaningful, either.

+ A residual analysis in Lp estimation also
0.80 + needs to be investigated more fully. Indeed,

+ the validity and estimates of parameter variances

,+ is required when p is not 2. Estimates of
leverages also needs investigation.

0.40
The fact that the estimates are not unique in

+ the nonmetric scaling models, even after allowing
for sign changes and rotations, is disconcerting.
This lack of uniqueness comes about because of

0.00 I the disparity estimation. In classical nonmetric
0.20 0.80 1.00 1.40 scaling, ordinal data becomes pseudo continuous

via the monotonic regression. (After the
monotonic regression, the disparities are analyzed

Aas if they were continuous.) It seems that a
." A plot of the configuration in this two dimension- better method would start from the premise that

al solution is given in Figure 3, in which the the data are ranks, and compute the configuration
scaled wine location is the leftmost letter in estimates directly from the premise. In this

the wines name. A plot of the subject weights regard, the MAXSCAL algorithm of Takane and
for each of these two dimensions is given in Carroll (1981) shows promise. This algorithm

Figure 4. In Figure 4 note that subject 3 gives uses the information in the ranks in the same

almost no weight to dimension 1 and gives way that the Cox proportional hazards model can

comparatively little weight to the second be thought of using it, through the marginal

- dimension. This outcome can be explained by the likelihood.
fact that subject 3 had a bad head cold during

the judging. It is encouraging that the multi-

dimensional scaling seems to be picking up this

fact. th i u n u o
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COLLINEARITY, SCALING, AND ROUNDING ERROR

G. W. Stewart

Department or Computer Science
Institute for Physical Science and Technology

University or Maryland
College Park

1. introduction The chief ill effects of near collhneari-

In this paper we shall be concerned ties are that they inflate the variance of
with the effects of near collinearity In the the least squares estimate or b and that

-linear model they magnify the effects of errors In the
* regression variables. In this paper we

y = Xb + e c11 shall be concerned with how collinearity

where X is an n Xp matrix of rank p,. interacts with errors in the variables.
The qualification "near" is important, for Because this is an interface conference, I

*the case where X is exactly collinear. that will start from my own fleld and consider
Is where ranik(X) -< p. is well under- errors arising from rounding during the
stood, at least mathematically. Here the computation of the regression coefficients.
theory of estimation tells us that the At the end of the paper, I will speculate
model (1.1) does not contain enough inror- on the problem in general.
mation to estimate the vector of regres- In the next section, we will introduce
sion coefficients. The cure Is usually to the condition number of the regression
supply additional information in the form matrix X and indicate why it may be
of identifiability constraints on b, or more considered a measure of coilinearity. The
rarely, when the collinearity results from condition number shares with other mea.s-
missing data, to supply additional obser- ures or coilinearity the property that it
vations to the model. Design matrices are changes when the columns of the regres-
the most important source of exactly col- sion matrix are scaled. rhe. chier techni-
linear models, and the associated theory cal problem in this paper is to find an
usually provides a clue to the appropriate appropriate scaling. In §3 we shall
fix. present an argument for scaling so that

Near collinearities, on the other the columns of the regression matrix have
hand, arise from various sources, and the same norms (unit colunin scalinig) and

LAtheir detection and treatment present a show how the results of rounding error
number or research problems that have analysis vitiate Lte argument, In §4 we
not yet been satisfactorily resolved. In shall present a different argument, based
this paper we shall be concerned with on roundiing error anialysis, that also sup-
their detection. In principle this problem ports unit column scaling. The paper
may be solved by dleciding what deleteri- concludes with some general observations
ous effects of collinearity one wishes to
avoid and then computing a measure of 2. The Condition Number
these effects for the problem at hand, If The condition number of a square
the effects are are acceptably small, one matrix was frst introduced by Alan Turn-
can continue with the analysis. If not. Ing in 19-18 to measure the sensitivity or
one must take special action, the solution of systems of liiear equations

i-
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to perturbations in their coefficients. A has a large eigenvalue and hence is itself L
related condition number for the solution large. Since the largest element of a posi-
of linear least squares problems was intro- tive definite matrix occurs on its diagonal,
duced by Golub and Wilkinson in 1966. at least one diagonal of the inverse cross
For the regression matrix of (1.1) the con- product matrix is large. These diagonals
dition number is defined as are called variance inflation factors, and

x) = l I II (2.1) the connection between collinearity and
,"X) ' Xt (2.1) large variance inflation factors has often

where been remarked in the statistical literature.

-t (XTX )IXT (2.2) The second characteriza~ion says
that If -IC Is small, then there is a vector

is the pseudo-inverse of X. Hlere is b for which Xb, is small. In other words,
the Euclidean norm of a vector or the X has an approximate null vector - a
spectral norm of a matrix: i.e. sure sign of near collinearity.

X min Xb I (3.3) The third characterization expresses

the relation between condition and col- -
For the properties of these norms as well linearity in a very natural manner.
as proofs of the statements to follow in Specifically, if PC' is small then a small
this section, see (Golub and Van Loan, perturbation of X is exactly collinear.
1983).

Although the condition number is
The connection of the condition closely related to the notion of near col-

number with collinearity can be made linearity, it was originally introduced to
clear by observing that the condition measure the sensitivity of least squares
number remains unchanged when X is coefficients to perturbations in the least
multiplied by a scalar. Consequently, we squares matrix; that is, the sensitivity of
may assume without loss of generality regression coefficients to errors in the vari-

that J1 X I. With this scaling the ables. The principle result is the follow- F_
reciprocal of the condition number has the ing. In the model (1.1) let
following characterizations.

6 = (2.3)

1. ,-' the smallest singular value of be the estimated regression coefficients.
X. Let

2. m-' in Xb [[. Y =X + E (2.4)

3. K-' be a perturbation of X and let
min{ E II: rank(X f- E) < p }. " Xty (2.5)

be the corresponding estimated regression
let us discuss each of these characteriza- coefficients. Then
tions in turn. 

..
iet T._

Although the first characterization is (2.6)
phrased as a numerical analyst might put I1 II -
It, it can easily be recast in language that r 1
a statistician would appreciate. The E l .
singular values of X are the square roots II X II II 6 II] X II ' "
of the eigenvalues of XTX Ilence if K where t is the residual vector y X6. A
is small, X'X has a small eigenvalue, and dot has been placed over the inequality
the inverse cross-product matrix (XTX)-a sign to indicate that term in [[ E I and

.. I.-.l

4. '
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higher powers have been Ignored., .X t X (2 .10 )
The left hand side of (2.6) represents 2-. 0

a relative error in 6 ; as it approaches X.0)
unity, at least one of the components of 6 where consists of the first p -I rows
must loose all accuracy. Likewise, the fac- of X

1 and x
( is the last row. It follows

tor II E II / II x represents a relative that
error in X due to the perturbation E. lim II II c00 (2. 11)
The factor in the brackets is always Q~o

greater than one and grows with ,c. Thus, and hence
if oc is large, the regression coefficients can limX-! o.
be expected to be sensitive to errors in the -o (2.12)
variables.

From (2.12) we see that by scaling a
Although the condition number pro- column of X in a suitable manner, we can

vides a great deal of insight into the make the condition number ss large s we
nature of collinearity and especially into like. One reels instinctively that there is
its interaction with errors in the variables, something phony about this inflation of
it is not much used by statisticians, the condition number, and on this
There are two reasons for this. The first account the phenomenon hss been dubbed
is that the right hand side of (2.6) is usu- artificial ill conditioning. But calling
ally an overestimate of the actual error, names does not solve problems, and there
This Is not surprising, since the bound remains the question of what scaling is
was derived by numerical analysts, who correct. We shall now turn to this prob-
typically encounter the very small errors lem.
caused by rounding on a computer and
can therefore afford to use a loose bound. 3. A Facile Argument
On the other hand, the errors in the vari-
ables of a regression problem may be com- There is one scalng which is widely
paratively large, and a loose bound may recommended in regression analysis: scale

cause the analyst to give up on a tract- the columns of X so that they have norm
able problem. one. If column means have been sub-

tracted from X, this scaling makes the
"The second reason, which is the one cross-product matrix XTX a correlation

we shall be concerned with in this paper, matrix; hence the name correlation scaling
is that the condition number is not invar- Is sometimes found In the literature.
ant under scaling of the columns or the However, we do not wish to confine our
matrix. To see how this comes about let analysis to models with a constant term,
us partition X In the form and we will instead refer to the strategy

X = (X. z) (2.7) as unit column scaling.

and define Where rounding error is concerned,
there is an easy argument in favor of unit

X. = (X. ax) (2.8) column scaling. It is based on two obser-

that is, X is X with its last column vations.

scaled by the factor or.

Now a a approaches zero, 1. Unit column scaling approximately
minimizes the condition number.

im 11 X Xj > 0 . (2.9) 2. Unit column scaling ameliorates the

On the other hand effects of rounding errors on com-
puted solutions. r

.-
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The first observation is due to van der arithmetic and not on the initial scaling of
Sluice (1969). The second is widespread the column.
throughout the statistical literature (see Without the second observation
for example (Draper and Smith, 1081, above, the case for equal column scaling
p.264)). Together they place unit column becomes less persuasive. It is true that
scaling in the enviable position of minim- the scaling approximately minimizes the
izing error bounds such as (2.6) while at condition number; but minimizing the
the same time minimizing the effects of condition number does not necessarily
rounding error. On could hardly ask for minimize a bound like (2.6), since a seal-
more. ing that makes K small may make

Unfortunately for this argument, the E / X large. It is only when we
second observation above is false. Pro- consider the error structure and the
vided that no exponent exceptions occur bound simultaneously that we can hope to

in the calculation of the regression make meaningful statements. We shall do
coefficients, the effects of rounding error just that in the next section.
are essentially independent of the scaling.
The reader may verify this for himself by 4. Rounding Error and Collinearity

a simple computation. Take a 3X2 least We begin this section by observing
squares problem and solve it in four that the argument or §3 has a rather loose

decimal digits on a hand calculator by character. The first of the two observa-
forming the normal equations and solving lions is precise enough; the second is
them with Gaussian elimination. Note vague and false. Hut even if the second
the rounding errors at each stage. Now were truly and exactly worded, the con-
multiply the second column by one hun- nection between the two statements has

* dred and repeat the calculations. Up to not been made explicit. One feels that

scaling factors that are powers of ten, there ought to be a relation between con-
exactly the same rounding errors will dition number and rounding error and
occur; the effect of the scaling is to scale therefore what is good for either must be
the rounding errors, not to change them. good for both. But in fact we have not

More precisely, what is actually been precise in stating what we are about.

shown by rounding error analysis is that To circumvent this problem let us
if a numerically stable method is used to focus on a specific question: How does

compute regression coefficients then the near collinearity enhance the effects of
computed coefficients come from a matrix rounding error on computed regression

X + E, where the colun s of E satisfy coefficients? In fact the material to

e < c "10 .' (3.1) answer this question is at hand. We haveej - 10 Yj (3.1) a measure K(X ) of near collinearity in X.
Ilere t is the number of decimal digits In (2.6) we have a relation between col-

carried in the computation and r is a linearity and accuracy. Finally, ii (3.1)
constant, depending on n. p, and the we have the structure of the error i.,atrix
details of the computer arithmetic. If we E. when only errors due to rounding are
write this bound in the form considered. It. will take only one more

observation to bring these together in
cj < C , (3.2) such a way as to suggest, a natural scaling

XI for computing the condition number.

then it says that the relative error in 'j The observation is that when E is

introduced by rounding error depends due to rounding. E Ij II x II will tenII-

only on the properties of the computer to be independent of the scaling of time

to be'indeende... r ecalin....-il
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columns of X. To see this first note that one can continue with the analysis.
for any matrix E, E 11 Ifnot, one must take special action.

V1 -max( }' It follows (3.1) that This technique of focusing on specific
problems is sound dogma, and the failure

(4.1) to observe it in §3 lead to contusion.
c Vp 10' max{ 1i U Only when we posed a precise question In

Since X I- max{ 1 I }. it follows §4 were we able to obtain satisfactory

that answers to the problems introduced by
the effect of scaling on condition numbers.

mx-mm< I 10 (4.2) However, one pays a price for this
success. Namely, one can pose many

a bound which is Independent of scaling, problems, and the answers may not all be
The argument is now short. If compatible. Let us look at three ways in

E / j X 11 is Independent of scaling, which our basic problem can change,
then we are free to use any scaling in First let us change the problem of §4
(2.6). In particular, unit column scaling, by positing that the model has a constant
which tends to minimize ic(X) Will tend to term hut we are not Interested in the
give the best bound. In other words, if effects of rounding error on the regression
the condition number as a measure of col- coefficient coefficient corresponding to the
linearity is to be used to predict the effects constant term. flow then should the con-
of rounding error on regression dition number be computed to reflect the
coefficients, it should be computed with accuracy of the remaining coefficients? A
unit column scaling, careful analysis (which is beyond the

The validity of this statement scope of this paper) will suggest that unit
depends on the whether or not the bound column scaling should be applied to the
(2.6) and (4.2) are realistic. We have original regression matrix, the matrix
already observed that although (2.6) gives should then be centered, and finally the
away a lot, for the small errors encoun- condition number should be computed
tered in rounding error analysis it is prob- from the centered matrix. Note that unit
ably satisfactory. The fact that the scale column scaling is not applied to the cen-
independence suggested by (4.2) obtains in tered matrix before the condition number
practice is supported by the details of the Is computed. This means that, contrary
rounding error analysis that generated to received opinion, correlation scaling is
(3.1). Thus if the condition number, com- not appropriate for predicting the effects
puted with unit column scaling, predicts of rounding error on regression coefficients
thit the regression coefficients are satis- in models with a constant term.
factorily accurate, the result can be taken A second way in which our problem
at face value, can change is that we assess the effects of

collinearity in a different way. F~or exam-
5. Concluding Remarks In the intro- pie, although the relative error
duction of this paper we said that the
problem of detecting collinearities can be II - (51)
resolved II II

by deciding what deleterious effects tells us a great deal about the largest
or collinearity one wishes to avoid components of 6, it tells ns less al)out the
and then computiing a measure of smaller ones. If these are of concern, then
these effects for the problem at hand, a better measure will be the individual
If the effect, are are acceptably small, relative errors
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Ii - P, I Stewart, G. W. (1983)
I' /3(5.2) "Rank Degeneracy," SIAM Journal

on Scientific and Statistical Comput-
Here we end up with p separate prob- ing 5, 403-413.
lems, each having its separate answer. Turing, A. M. (1948)

A third way in which our problem "Rounding-off Errors in Matrix
can change is that we might forget about Processes," The Quarterly Journal of
rounding error completely and ask how Mechanics and Applied Mathematics
can (2.6) be used to predict the effects of 1, 287-308.
errors from o'ther sources on the regression

coeficiets.van der Sluis, A. (1060)coefficients. Again the problem of scaling "Condition Numbers and Equilibra-
must be reexamined. In (Stewart, 1983) 1 ton of Matrices," Numerische

have given tentative reasons for believing Mat hematik 14, 14-23. " "c

that bound like (2.6) is most meaningful .1'-

when the columns of X are scaled so that
the columns of E are approximately equal
- equal error scaling as opposed to unit
column scaling. If this is true, then it
must be concluded that near collinearity
is not as basic a concept as might be
wished, since a matrix may be deemed
nearly collinear under one class of pertur-
bations and may be well behaved under
another.

The conclusion to bc drawn from
this is that we should not attempt to
summarize something as complicated as
collinearity in a single number. Instead
we should look at all the techniques com-
monly used in regression analysis and
analyze how collinearity effects them. If
simplifying patterns emerge, well and
good; but my belief is that several sets of
numbers will be required to capture the
effects of collincarity.
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BIVARIATE DENSITY ESTIMATION AND AUTOMATED
STICK-PIN MAPS

Michael E. Tarter, Wliam Freeman

Department of Biomedical and Environmental Health Sciences
University of California Berkeley and West Coast Cancer

Foundation. San Francisco

A variety of augmented scatter diagrams and stick-pin maps are described. These methods
use a nonparametric bivariate density estimator to determine the color, representation and
masking of data set elements. The identification of a single datum with a single "data point"
is considered. It is shown that for some applications it may be both computationally and sta-
tistically useful to represent each datum with a spray consisting many individual symbols.

1. INTRODUCTION graphic information to the viewer. attached to a

Current microcomputers provide economical color as point which associates this information with a loca-

well as medium to high resolution graphical capabil- Lion in a two dimensional space by a shaft of a length

ity. The scatter diagram and stick-pin map can now which could be made proportional to estimated pro-

be visualized as the pre-computer era ancestors of bability density. It will be demonstrated that both

many new ways of displaying statistical information, the choice of head characteristics and the choice of '-
pointer location can, in microcomputer applications.

This paper describes a series of experiments with, a be made to suit a variety of applications.
variety of augmented scatter diagrams and stick-pin
maps which the new generation of computational The topics considered here can be viewed as exten-

hardware has made economically practical. sions of two basic procedures. Kronmal and Tarter(1974, pp.377-381) present estimates of bivariate
There seems to have been very little previous con- densities, one of which is shown in Figure 1. In
sideration of the intersection of the field of model- essence, the production of this figure first involved
free or nonparametric curve estimation and the field the bivariate estimation of a density, e.g.. f(zY), as
of graphical methods in statistics. For example, described in Tarter and Silvers, (1975) and secondly
none of the papers listed as references to the survey the graphing of J. In the latter paper, several con-
paper on graphical methods by Feinberg (1979). tour diagrams are presented which depict density
mentions the terms; curve estimation, p.d.f. or c.d.f. estimators such as! shown in Figure 2. The routine -
estimation or model-free methods. Even when a pub- used to produce Figure 2 traces each contour and
lication that concerns graphics contains material only evaluates I at points near each contour. How- -,.

which is related to curve estimation, this relevance ever, in Figure 1, 1 is evaluated at every zy coordi-
seems coincidental. For example, Trumbo (1981) nate of a grid of points. This latter procedure uses
carefully presents a theory for the coloring of bivari- e o muteri o d hics a poedr n con

ate statistical maps. Principle II of Trumbo's (1981) simpler computer code, which is an important con- 6=;papr sate tht "mpotan difernce inthelevls sideration for a subroutine designed to be moved .

paper states that "Important differences in the levels easily to a variety of microcomputer systems. On the
or a statistical variable should be represented by other hand, since the number of required evaluations .
colors clearly perceived as different." of f increases quadratically with increase in graphi- .--

In the present paper, color is discussed as a means cal monitor resolution, the computer time demands
of conveying information about an estimated bivari- of this simple code may be substantially greater than
ate density and not as a means of distinguishing those of more complicated contouring routines, such
values assumed by one or more random variates, as that utilized to obtain Figure 2.
Specifically a value Zt =Y(X, Y) where ? is a bivari- The second procedure was developed by Tartarate density estimator and ( ,)represents the i -th Tescn rcdr a eeoe yTre

aesyrentse b t c(1979) and depended on the observation that an
of n members of a data set, is represented by color estimated bivariate as well as univariate density
and other means. Note that Feinberg's (1979) could serve as a useful data transformation. Con-
classification of graphics lists histograms and scat- sider that the color or shape of each stick pin-head
terplots in the same Category 4. The one dimen- In a conventional stick-pin map can be chosen on the
sional analog of the scatter plot is not a histogram basis of density height estimated at the location of a
but rather a line nfiarked at univariate sample values. data point. If one were only interested in the rare or
In this paper, Z =f(X.Y) can be envisaged as a gen- unusual event, one could choose to insert a pin only
eralization of a value otained from a histogram as at those points over which the estimated density is
distinguished from a point of a scatterplot, e.g., less than a constant. In an analogous way, Figure 3
(X4,Y). In Feinberg's (1979) paper, contours are was obtained after: 1) a bivariate density estimator
mentioned under the category of "graphs not involv- j was computed. 2) A sequence JZ was obtained by
Ing data." In this paper a way of visualizing contours using the bivariate density estimator f as a transfor-
which are created from sprays of data is presented. mation. Specifically, the i-th member of the sample

The reason the stick-pin map provides a particularly I where i=1 ...n was associated with a value
good framework for discussion, is that a stick-pin IX (X, Y). Each value of Z can be interpreted as
can be viewed as having a head which conveys an estimate of the sparseness or richness of density

.-..- 7I%-______.____ .__________ .. .._____________. . ......_____________..__..-..*'-*....--,-.



within a fixed size neighborhood of the point (XTY). the trimming of the borders of a lawn.) and 5) Select
An exchange of variables option was exercised 1 o the appropriate symbol for display purposes.
plot the point pairs J(XZ)i= .... n alternately. Note that unlike the display shown in Figure 1. IF
J(rZZo i =I.... ; could have Cteen plotted as a prel- evaluations by these new procedures are required
iminary to the next step. 4) An editing routine was either at, or in the neighborhood of, n data points
used select those c(X,Zt) i=1... n points where Z and not at all grid points. We have experimented
was greater than a constant. (This process masked with modifications of the methods used to obtain Fig-
all but the most sparsely distributed points. 5) The ure 1 which were designed to use a series of evalua-
variable exchange option was again exercised to tions of f over a widely spaced grid to deternine the
replace the display of the edited (XVZd) values with a need for refinement. These routines not only
display of corresponding (X,.Y) values, i.e.. the required a cumbersome and lengthy code but failed
sparsely distributed subset of the original sample. A to resolve detail for a variety of test patterns.
printer plot routine accompanies the program. The methods to be described here have a tendency
The basic feature which differentiates the method to emphasize data anomalies since, being elabora-
used to obtain Figure 2 from that used to obtain Fig- tions of simple scatter diagrams and stick-pin maps.
ure 1 is that the end product of Figure 2 is a display fine structure is clearly resolved. On the other hand.
of data points i.e.. is associated with a sample; while particularly when the spraying technique detailed in
Figure 1 illustrates an est-nator of an underlying Section 3 is utilized, global population characteris-
population. In essence the method used to generate tics can usually be as clearly discerned by the new I-
Figure 2 goes full circle. i.e.. starts with a sample and procedures as with contouring techniques (the latter
then uses a population density estimator to modify a tends to both smooth over sample fine structure and
display of sample elements. Displays such as Figure require a code highly dependent on the means used
1 and the contours of Figure 3, shed all reference to to obtain the bivariate estimator I(zly)).
individual sample elements in order to convey infor- Naturally in some systems a superposed scatter
mation regarding tlhi global or overall nature of an diagram and contour diagram may be a reasonable
estimated density. As previously mentioned, the pro- substitute for the new techniques described in this
cedures to be described in this paper, nith varying paper. Note however, that what appear to the eye as
degrees of, sucness both display global distributional contours generated by the new methods are actually
characteristics and the fine-structure of the sample. formed directly from the data points themselves.
They also tend to resemble the routines used to pro- The previously mentioned Tarter, Silvers (1975)
duce Figure 1 and 2 and differ from contouring rou- paper and considerable earlier work by Gregor
tines, in-so-fai as they involve simple and transport- (1969) and others deal with procedures for modifying
able computer code. and underlying density estimate to either increase or
2. GENERAL METHODOLOGY decrease the contrast between distribution com-

The contours shown in Figure 3 were estimated from porents. A composite or overlay of the scatter
one thousand random variates generated from the diagram computed from one's original data and a IT
three component mixture of bivariate densities, contour diagram, in essence separates the head and
(1/3)N(6.9.1.5.1.5.0.5) + (l/3)N(lO. l0,.5,l.5.-.7) + point of each stick pin. On the other hand , since
(1/3)N(14,ll1,.5,1.5,O.5), (the order of the parame- contours are actually formed from the scatter
ter arguments of N is A p . a.a ,p ), using diagram or stick-pin head by the new method, it is
methods described in Tarter anA Silver' (1'675). The easy to associate the effects of the contrast
techniques to be described in this paper do not modification process upon individual or subgroups of
depend upon the computational tractability of the points.
underlying density estimator. This is not the case Before turning to the specific means of creating aug-
with contouring methods which rely on gradient pro- mented scatter diagrams and stick-pin maps, it
cedures and therefore the numerical or analytical seems appropriate to summarize the following basic
tractibility of f's partial derivatives. Since any algorithm:
accurate bivariate density estimator can be used in 1) A bivariate estimate f(z,y) is obtained from
conjunction with the methods to be described in this the sample XY,] i=1,...,n.
paper, for the sake of brevity, we will omit the 2) The sequence R --(x.y ) i=., is
specific steps used to obtain f and leave these steps obtained.
to the tastes and needs of the reader. obThed.
Figure 4 was obtained from the same size sample and 3) The I sequen-, is ranked.
underlying distribution that was used to generate 4) The ranked values or the JZ] sequence are
Figure 3. To obtain this graphical display all five used to determine the properties used to display
techniques to be described in this paper were each datum)XY I i .n.
applied. These are: 1) Spraying. 2) Masking, 3) Band- The word "datum" rather than "data point" is used
ing, 4) Color and 5) Symbol differentiation. To imple- above beciuse is, as we shall see, a spray of points
ment all these techniques the fundamental idea can be usefully associated with a single datum.
which led to the generation of Figure 2 was utilized. The programs which generated the maps in this
Specifically the estimated value Z~ =f(X~,) i =l paper are written in Fortran 77 under li'e UNIX 4.2
was used to: 1) Pick the color of a display character operating system and, with possibly minor alters-
2) Determine whether a given point should or should operatin te an th poslin o anea-
not be displayed. 3) Select the number of display tion, ith o ptinth , can bcm
points to be associated with each datum, 4) Mask
display points to better visualize the edges of an 3. ,PRAYING AND MASKING
estimated terrace (this procedure is analogous to We will now suggest that there may be conside able
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* practical value to using several disconnected sym- displayed. The method which was used to produce
bols to represent a single datum and even in some Figures 4 through 6 was based on the specification of
cases, representing some data with fewer "points" a set of regions in terms of Z Le. the kth region
than other data. will contain those points for wAich Z is in the half

*' Generally speaking the chief advantage of using a open interval (u. C ,ivC 0 ] where u C i1s the left end-
Spray of points to represent a single datum is that at point and u5 Ce ?s t e right of the kth inter-
the edges of what we will later define as a contour, vat (The sequence of u and v. values is chosen by i

* • the spray can be mAsked in order to give the track- the user). The set ot intervals used in Figure 4 4 - .1'
ing eye useful information about the shape of the through 10 of this paper was (C...95C0 ,-
contour. As an analogy, consider that the user of a (.95c 0,.90C], (.90C,.6Oco], (.70C'..55C,
can of spraypaint delivers a cloud or scatter of dro- (.55C0 .. 35C I. (.35Ca,.lO e, (.lOCa.,0.0 ] . These were
plets for each pull of the spraygun's trigger, chosen In Order to assure that standard uncorre-
Towards the center of a large area to be sprayed a lated normal data would generate bands one through
single color, most of the droplets will usually reach six of approximately equal width. In Section 5 of this
the object to be painted. However, along the border paper, practical reasons for using special pro-
separating two colors, masking tape or a masking cedures to choose the lowest band, here band seven,
tool is used to block off a significant portion of dro- will be discussed. Only the Ist, 3rd. 5th, and 7th
plets. Now consider the important fact that when the Intervals are plotted using red, green, blue, black.
painter knows that he is painting the interior of an respectively, for the color figures. As elaborated
object he or she need not be concerned about the upon in the next section. the remaining intervals
use of a masking tool. This basic principal, when form the blank bands.
applied to statistical graphics, makes it compute- 5) The inner and outer edges of the regions are
tionally economical to program spraying techniques. masked as follows:

(ma (ow )' -"Specifically suppose five display points are used to i) Let Z and Z. be the smallest and
" represent a single datum where four of the five largest values, rw[tively, of Z in thepoints are corners of a square centered at what for kth region, i.e., Z. -is he smaist value"

conventional procedures would be the fifth, i.e.. the t )
"data". point. Now define a contour of bivariate esti- and Z is the largest elements of the setmator fas the locus of(zy) points where (z,Y)=C 1Z ivtCo.Zc u Co. Thus, v C. and

Vao repree )tednsity estila t thwhere C is some positive constant smaller than the U0ree the des e at the
largest value assumed by f over the entire z,y outer and inner bordering contours of the
plane. In this discussion we will also assume that the kth region, respectively.
contour is a single closed curve. ii) The area beyond the outer bordering con-
Consider two distinct contours associated with the tour of the kth region is masked by com-
loci (z,y) = C, and 7(z.V) = C, respectively, where paring the density at each of the four peri-
C oC_. The region between these contours will be a pheral points of the spray to VC, ,i.e.. only
bracelet shaped or banded subregion R(C, C) of the those points for which f is greater than or
z.y plane. Suppose, as in the previous section. the equal to v5 C0 . are plotted. Beginning with
sequence J f(X,,Yt)J = .n is obtained and Z where j is the smallest element of

-ke,C). each datum is sequentiallyranked to form the sequence -I .n. Under sprayed and masked until the masking pro-
the previous assumption that eac% contour is a sin- cess fails to reject any peripheral points m
gle closed curve, the indices J(i)5 of JZ )I associated c.ute.s
with those data points (XA.Y) whic'h fall within consecutive times.
R(C,.C.) will form a consecutive sequence S(C,.Cs). iii) An analogous process to that described in iiNow suppose a particular plotting character is to be is used to mask the area beyond the inner

bordering contour of the kth region except
placed at each of the five coordinates (X.Y). that the starting value is Z?. where r is the ".
(X+t, Y). (X.Y,+E), (X-,Y.). (X.Y 4-t). provided largest element of 6(C .C ). and the index
that each o tiese yive points is within R(CICZ r is sequentially decremented. The process
(where e is a small positive constant). Those values terminates when none of the points in m
of these five coordinates which are most likely to consecutive five point sprays fail to be plot-
protrude beyond the region R(C C_) will be associ- ted.
ated with Z indices near the b~gnning or end of te ow -
the sequence of indices S(C.C,). This fact allows One can conceive of examples where the plateau-like
one to construct a computer program which shape of J might cause the spraying process to ter-
significantly reduces the computer time required to minate prematurely. Such problems are easily
trim the edges of the five point datum spray. remedied by increasing the value chosen for m.
For example, to obtain Figure 4. the following The c used as part of the spraying process was
sequence of steps was utilized: specified as either a percent of the sample range or* as a percent of the sample standard deviation. For
1) The one thousand random data elements from the all but a very few applications, e will differ in the x 5
distribution described in the previous section were and y directions (horizontal and vertical. respec-
used to obtain a bivariate estimatora e n tively. Technically v should be subscripted as either

2) Each of the one thousand data elements. i.e.. e or a . However, because in our program both C
(X. Y )i =l.....1000, was transformed to Z =f(X,. ). and r are determined by a single user assigned mu..
3) The set Z Ij =1....,1000 was ranked to form JZ(o, .  tiptie? of the estimated range or standard deviation.
We will henceforth define C0 as the largest value the use of subscripts was felt to be an unnecessary
assumed by aver the space.within which is to be notation. In the examples. 9 was chosen to be 2% of

the sample range. In some applications involving

!% " .z "" -
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natural rather than simulated data. it may be prefer- It has been our experience that data is either very

able to use the sample standard deviation or a scale dimpled. e.g.. as would be the case for most situa-

parameter estimator which is robust with respect to tions where digit preference pertains, or has few if - -

outliers, any dimples. Thus, if blank bands alternate with

It should be mentioned that there are many alterna- display bands, and if within diplay bands each datum

tive means that can be used to arrange the peri- is represented by one or more symbols. it is unlikely

pheral points. Le. spray. However, the arrangement that data dimpling will go undetected since it is

used in the examples is easy to program and gives unlikely that all dimples will occur exclusively within

useful regions. Notice the gaps in the 3rd and 5th blank bands.

contours of Figure 4 (green and blue contours. Figures 6 through 8 illustrate the advantages of

respectively). These gaps can be filled in by using a blank banding and masking. The first display of this

broader spray. For nirepoint spray (X.Y), sequence is a typical scatter diagram obtained from

(X+z ,y. (X.Fy+e), (X -e.,Y). (X.Y--,), a one-thousand element random sample from the

(X+9,. Y). (X ,Y+ar). (Xs. Y). (X.Y-t ). where same three component mixed normal distribution
" =t multiplier values a Y -zn. w here used to obtain Figure 4. Figure 6 illustrates the use• . ss- a,,-multilier vale ~eween two and our. "

were found to be effective. The rationale for the of blank banding where a single data point is used to

ninepoint spray is that the inner points. i.e.. those represent a single datum. The next display illus-

offset by tI. give definition to the edge of the contour trates the effect of spraying without masking. While

and the outer points, i.e., those offset by by t the swarm of points shown in Figure 7 is more vividand~ ~ ~ ~ ~ ~ ~~~2 teotrpss etosofstbbyzMake

the contours appear continuous. Of course, the than that shown in Figure 6, we have found that this

broader the spray the greater the risk of masking same effect could be much more easily obtained by

features which provide clues about the fine-structure representing each point by a larger symbol. e.g., a

of the underlying density. Thus, the use of very circle or X. Finally. Figure 5 clearly illustrates the

broad sprays tends to negate the advantages of this advantages of spraying and masking in terms of most

new approach to contouring over the usual method user's ability to discern global distributional struc-

of contouring illustrated in Figure 3. (This is true lure.

both in terms of processing time and resolution of 5. SYMBOLS. COLORS AND SPRAYING

detailed features of the data,) When we first began the research described in this

We will now proceed to discuss and illustrate the fifth paper, our impression was that the most useful

step in the above process; the choice of display sym- display characteristic which the JZ I could deter-

bot. mine would be found to be color. We now feel that

4. BLANK BANDING banding and spraying can often yield so much infor-
mation that the use of a color as opposed to mono-

An important and interesting aspect of these tech- chrome display may be an unnecessary. albeit
niques is the decision about whether to plot a given attractive, luxury.

data point. It may seem paradoxical that a datum theachice o i ca q f r

can provide more information by not being The choice of which particular sequence of color or

represented than by being represented. Consider symbols to use to represent a particular sequence of

however, that possible data outliers will generally be 7 values is closely connected to representation

represented by points in only one of the bands, i.e., perspective as outlined in L Gurry's book Cosanne e-

the band associated with the smallest values off. Llexpression L de L'espace, 1950. page 6, which con-

Therefore, as long as the masking procedure tains a brief history of the artists' use of color and

described in the previous section does not blank out other techniques to represent three dimensions on a

the lowest band, information about extraordinary two dimensional surface.

data values, i.e.. outliers, will be adequately conveyed In general, warm colors such as red seem to be
even if data in other bands are not represented. As ideally suited to representation of points where "

will be discussed in the last section of this paper it assumes large values, i.e.. those which would be

may be useful to mask some outliers, closest to the viewer if a three dimensional model

There can however, be distributional details within a rather than a two dimensional symbolic represents-

body of data which, although not what could be Lion were used. Conversely. blue and finally black

called global features, are of interest and impor- appear to be the best final colors to use, where as

tance. Consider, for example, what might be called a illustrated in Figure 4 black squares represent the

data "dimple" i.e., a small set of values W sur- outlying points where f values are smallest.

rounded by a region W such that underlying density
?', J(x,y)<<f(u,v) wherejx,y)EW s and (u,v)EW.• Good Use of black squares, dots or circles at low density .

and Gask)« 180,v us ther anrd (uip" for tel Good levels, and larger sized "hats". "tildes". or "pulses" at
end Gaskins 1950, use the word "dip" for the feature higher levels, can simulate the visual clue that when

ewe call a "dimple". Because of th smoothing viewed from above, if the height of a stick-pin whose

the presence of a dimple may not greatly influence f head were the chosen colored symbol were propor-
th rsneo dml a o retyifunetionete to Jf. then this stick-pin head would appear -",

particularly if the kind of dimpling often referred to smaller.

as digit preference pertains to one's data where a

dimple is, in effect, in close proximity to a "raised It should be noted that many symbols have particu-

area". However, since khe methodology described lar asymmetries which can be used to advantage. "

here only uses display symbols at or near the coordi- For example. squares and 'hats" tend to roughen -*

nates of a datum, even if 7. is fairly constant at and edges while "tildes" and "pluses" tend to "mask" well,

around a dimple, the presence of a dimple will be i.e., lead the eye comfortably along a curved contour.

apparent in many cases. Smoothness is usually desirable for moderate to high
. ., stick-pin height, levels since it is for these

-.. . .. . ..
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values that global distributional features are often extreme outliers has led to an unsatisfactorily
visualized. Therefore it seems ideal to use squares compressed view of the bulk of data points. It seems
and other roughening symbols to represent outlying advisable in these situations to select the viewing
stick-pins, i.e.. low values of f. Also, a symbol such area so that the bulk of the data are satisfactorily
as a "tilde" or "hat'. which is longer than it is high, displayed, and to indirecUy indicate outlying data
can enhance resolution if its longer dimension paral- that cannot be displayed. One method of doing this I'..

lets that of the data display. For example, in Figure is to report the number of outliers outside the .1'..
4. since the overall display of points is longer than it vewport. A more informative method is to place a
is wide, it seemed advantageous to place tildes and special symbol just inside the border of the viewport
hats as shown. Here again, artists using most at the Intersection of the viewport border line and
engraving methods had learned to place the burin of the line connecting the centroid of the lowest con-
their scratches parallel to the curves they wished the tour (or contours) and the outlier. If the graphical
eyes of their viewers to scan. (Antraesian. Abrams system available to the user is sufficiently flexiable. -

1971, p.376; Oxford 1971, p. 1188). one can go a step further and let the size of the sym- ..
bol or the choice of the symbol itself suggest the dis-

As one final point. it should be mentioned that there tance between the outlier and the symbol. For exam-may often be reasons for using a blank band to ""
remayrofenbe rasoins forusingr ablankbanoe ple. if the chosen symbol is a letter, then the greater
represent points (X.Y) where f'(X,Y)<6 for some this distance from the outlier to the viewport. the
small positive value of 6. We have often worked with later the letter can be chosen from the alphabetic
sets of data where the presence of one or a few sequence. c c f ti

2.401 2 2 2 2 2 2 2 2 2 2 2 2.-
10.201 2 2 2 2 2 2 2

21..O0 2222 4 4 4 44 4 • 4 4 44 a 2 2
l1S.2ol 2 2 2 4 4 4 4 4 4 4 4 2 2 2
1,3.4 2 2 2 4 4 4 6 4 6 4 6 6 6 4 4 4 4 a 2 2
111.401 2 2 4 4 •l 444 4 • 1
169.201 2 4 4 4 at a6 I I 4 4 4 2 
141.001 2 2 44 6 6 a a 6 4 2 -24.0 2 44 44 6 ANMNaN 6 4 2

142.4Z 2 2 4 4 a6 NNM N 66 44 M 24M a
." 140.401 2 4 44 62 N NNI NN II 44 44 22

15.201 2 4 4 4 26NNNNNN l 4 4 • 2
IS6.I0: 2 2 4 4 46 BBO 66Z4 4 2
151.601 2 2 4 4 4 4 S S 6 4 2 2 2
151.601 2 2 4 * 4 6 1 6 a I 6 a a 6 4 4 22
149.401 2 22 4 4 6 6 a a a a 8 a 6 6 6 4 22 2
141.201 2 2 444 4 4 a 1 a 6 666644 4 4 2 2 2
14S,01 2 22 44 4 4 6 6 •4 4 2 2
,42:.0; 2 2 2 4 4 4 4. 4 4 4 4 4 4 2 2 2
140.601 2 22 44 4,6 44 • 2 2
4:6.401 2 4 4BES44 4 213.401 22 44 56655665 44 44 2 2

134.0101 2 2 44 4 6 6 B S a a 6 6 a 6 a 2 2

1- 1 2.4 2 4 4 6 6 1 6 4 4 2 2
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•2 0I 2 4 6 6 a n a a a 6 4 2'
12.012 4 4 NN NN 6 4 2 2 2
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114.201 4 4 S666BB1 44 44 2 Z Z.
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109.601 44 6 4 6 6 6 4 4 •4 2 a 2 2
101:.601 2 4 41 4 4, 4 4 4 4 2 2 2 2 2 2 -'

'0 5.0 22,2 .44.44 44 4 4444 222 22
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101.001 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2
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FIGURE 1. BIVARIATE PRINTER GRID PLOT SHOWING
BANDED CONTOURS.
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S as a Programming Environment for Data Analysis and Graphics.

John Chambers

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper discusses experience with the S system as an applications programming environment. It also
considers, in the context of data analysis and graphics, the class of workstations called integrated programming".,:-,d "
environments. Current research on a merging of the needs of computing for data analysis with the attractive
features of integrated programming environments is outlined.

I. Introduction. models for their data. In addition, we emphasized
in our design the ability to extend S. Users couldThis paper looks at interactive programming write S macros to encapsulate analyses that were to

environments for applications using data analysis, be repeated, possibly with differing arguments.
graphics and related kinds of computing. The next
two sections give a view of the history of S and of They could develop new functions that interfaced
recent ideas in the general field of integrated to arbitrary algorithms (typically FORTRAN

re n g i environments". In the context of the subroutines), not necessarily designed for use withprogramming eS originally. Also, and unusually for such systems,
present conference we emphasize the experience S allowed easy creation of arbitrary new data
gained by a substantial number of applications S tructureasy ren a tay pos etc

development groups from using S as a structures to represent new analyses, plots, etc.

programming environment for their work. The last These facilities have made S into an applications
section outlines, necessarily briefly, current research programming environment, which a variety of
aimed at combining the important features of groups, at Bell Labs, at AT&T and elsewhere
integrated programming environments with (notably at universities), have used to create other,
facilities needed for quantitative (scientific) often more specialized, systems. We anticipated
computing; for example, access to algorithms for that this use would be made of S, and provided a
numerical or graphical computations. Experience number of features accordingly. (Besides those
gained from the use of S as an applications mentioned above, there are facilities for
programming environment for business research, documenting user extensions, for writing menu-
data analysis, engineering projects and other driven interfaces in S, and for incorporating S
applications is being used to guide the new design, results in report-generation software.) In a typical
particularly in terms of combining flexibility with scenario, a few of the more adventurous computer
run-time efficiency. users in a local group find out about S, and begin to

experiment with it for the needs of the group.
2. The S System. After a while, these users decide to create some

more-or-less canned facilities, built on S, thatS is a language and system for the interactive would then be a system to be used by other
analysis of data, developed at Bell Laboratories and m bes th e group.em t-'e two-tieroermembers of the group. In the two-tier user
currently in use on the operating system. Two community resulting, the later users might have
books [I; 21, describe respectively how to use the little direct contact with either S or the operating
system for data analysis and graphics, and how to
extend the system by incorporating new algorithms system.
as S functions. The design of S and its relation to The advantages of using S for such purposes are
other work in computer science and in statistical several. S is designed to be easy to use and highly
computing are described in 131. interactive. It supports interactive graphics on a

variety of devices. By using the macro facility, new
We designed S to enable and encourage good data aaye a ecddadtse aiy h
analysis, by letting users look quickly and abily to we comed fntiste ae Toconveienty atmanydispayssummries and ability to write compiled functions, interface to .....

conveniently at many displays, summaries, and

7,
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external algorithms, and define new data structures that points in an interestingly similar direction.
means that the extensions possible are unlimited.
Feedback to us from about 20 applications projects 3. Integrated Programming Environments.

has ndiatedtha S as povied subtanial Recent evolution of high-powered and (relatively)
increase in the productivity of the developers hi-pce prsnlwktaoshve rdud
compared either to programming in a language like exam-plie, psuhas LIrstaines anprdute

flxbe oryFOtRA rtoteuesfohels Smalltalk-80 system, of integrated programming
flexblesystms.environments. Proponents of these systems assert,

This extensive experience on the part of with considerable informal evidence in support, that
applications developers has also contributed several the new environments allow users to be more
new challenges to improve the system. Here, as productive in designing, implementing and testing
often, there is a conflict between ease of new software. Specific features that distinguish
implementation and efficiency of computation, integrated programming environments from earlier
Writing S macros is easy, particularly up to the systems include:
point of trying to make the macros themselves the user's processes operate in a single,
"friendly" to the end users. But occasionally thepestntm or sac (i cnrsfo
computations involved are difficult to express in S.pestntm or sac (i cnrsfr

More frequently, serious inefficiencies can result example, to communicating via files);
when the macros are applied to sizable data or are *the environment is based on a single language
themselves used in an iterative fashion. The usual and corresponding set of programming facilities,
cure attempted, to write the same calculations in a for user-written and system facilities alike;
compiled function, helps in most cases but requires *sse aiiis(h bosr nSalak
substantially greater programming activity on the alwuest xmndbgadcag l
developer's part. the programs, user or system, in a highly
The fundamental problem, to a large extent, is that interactive way.
the application developer is working not with one
language and environment, but with three or four. The intent is to make the complete system easily
Further, these languages inherit a degree of mutual visible, testable and open to user change, via a
inconsistency from the software tools used to create single integrated programming environment. -

them. The current S environment depends heavily I sueu ocmaeti praht h
both on existing tools and on tools specially adapted eniom twchrpsnsappurcret

I fo S.Themacr prcesor i a erson o th m4 approach to interactive programming environments
macro processor. The languages in which new [~. 1
functions and new algorithms for compilation with
S are written are extensions of FORTRAN *processes, in most cases, operate in separate
utilizing the Ratfor preprocessor and m4. Heavy address spaces and communicate via files and

4use of tools was an important factor in making S file-like connections;
work in the first place, and in the ease with which *teevrnetepaie h s fmlil

its esin hs adpte to rapily volinglanguages (e.g., S, the shell programs, C,
computing environments over the last five years or FRRN w,..,adepcal h
so. However, the price paid includes inconsistenciesdelomn adus ofmlidpnet
among the various levels of S as a programming seoften tools.fsmlndpndn
environment.

H Th chllege or ur urret rseach s ten o *the most important virtue of the environment,
Tteacksimultaneouy retreerh:sthnt for many uses, is that it does not get in the way,

but provides a relatively clean and simple
*simplifying the application developer's view of computing model in which users/programmers

the programming environment, can do what they want;

*making S more efficient for the kind of use *on a mundane level, is portable to a wider range
described above, of computers, including many that are an order

of magnitude less expensive than current
Before outlining the implications of this challenge, integrated workstations.
let us look at another aspect of recent computing
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Parallel to the programming environment In summary, both kinds of virtue are important in
distinction is a dichotomy in programming data analysis. We want ease of use, but we also
languages. Languages like LISP, Smalltalk need access to a variety of reliable algorithms and
(regarded as a language) and Prolog are popular tools.
for the integrated programming environments.
Conversely, languages like C, the Algol family, the 4. An Integrated Programming Environment for Data
FORTRAN family and Pascal are associated with Analysis.
conventional" systems. If we label the two families We believe that a consistent and achievable mixture K

of languages interactive and algorithmic, we can of the virtues of both approaches outlined in section
list characteristic contrasts: 3 will provide a substantially improved

interactive languages tend to be used to build environment. Research is proceeding at Bell
interactive systems, algorithmic languages to Laboratories on such an environment, using the
build algorithms or specific programs; experience with S as a starting point. This

section briefly describes the new environment, a
* algorithmic languages tend to use scientific scinbifydsrbstenwevrnet

prototype of which has been written by the author.notation, interactive languages some syntax The essential characteristics of the environment are:
related to logic, the lambda calculus or related ." -

forms; e a single analytical language, similar to the user

* interactive languages tend to bind during language in S but allowing dynamic definition
and modification of functions;execution (dynamically), algorithmic languagestend to some form of compile-and-load; * a browsing and debugging environment in the

* most telling of all, probably, the families have same language;
different definitions of virtue: ease of use and * explicit inter-language interfaces that allow the
adaptability for interactive languages versus use of existing or new algorithms written in
correctness and efficiency for algorithmic languages like C and FORTRAN.

languages. * similarly, an interface to the operating system
tools (e.g., via the pipe mechanism [4, page G'.

Our interest is not to make a judgement of merit t90m)e.-.
between the two approaches. Rather, we want to
understand what features of each are mostimporstant htocomputin fredaturs nof ys and host This environment can have, for the applications
important to computing for data analysis, and how developer, much of the flavor of an integrated

programming environment. Such developers will

Simply put, we would like the best of both. As the only rarely need to design algorithms or tools;
discussion in section 2 indicated, advantages of rather, they will tend to use such software when it
simple, highly-interactive program design and comes along. For their own design, the analytic
modification are very relevant to analytical environment will be much more effective.
computing. The learning barriers imposed by As with the Interlisp or Smalltalk environments,
having to use several, partially inconsistent
languages and a variety of (none too powerful) programmers have access to the definition of the

language interactively. In our system, we make use
debugging tools seriously inhibit the development of of the general hierarchical data structures to
applications systems. On the other hand, data maintain both the definition of operators and
analysis and graphics depend on a variety of functions in the language and also the tree of

*algorithms and software tools for numerical fntosi h agaeadas h reo
calculations, graphics, and report generiW partially evaluated expressions during evaluation,all within the language itself. The fundamentalestimated about 50,000 lines of support code for S o n p g d e n aoperations o" parsing, code generation (that is,-.-..
(31. A sizable fraction of that represents careful
algorithmic design and implementation (usually not ovtmiation of the arse expression anevaluation are themselves accessible as functions inby us). Not having access to the languages like the language. In particular, there exists a definition
FORTRAN and C, in which such algorithms are of the semantics of evaluation written in the
written, would be crippling. Even if we had the language. The prototype has a rudimentary version
energy to re-implement the algorithms, a prudent of a debugger, also written in the language.
user would hesitate to trust the result, without a Iate.
Usrwudhstt otus.h eut ihu Important bu; ding blocks are datasets for the
long sequence of testing.

7....... ......... ... .. . .



evaluation tree mentioned above and for the history be designed to combine the ease of use and
of the user's interaction. Various functions use modification found in integrated programming
these datasets to examine and control evaluation; environments with the access to algorithms needed

for example, a menu-oriented browser examines the for quantitative work and with sufficient run-time
*evaluation tree (or any other hierarchical dataset), efficiency to support a variety of applications

with facilities for editing any piece of the dataset. development.

P.The operators and functions in the language have References.
definitions in the language. For efficiency, some [I] Becker, Richard A., and Chambers, John
functions are built-in (implemented by compiled C M., S: An Interactive Environment for Data
code), but equivalent definitions in the languageAnyss ad Gais, W swrh

* exist (as in the case of evaluation itself), to permit
verification or user modification. However, it isBemnCA194
explicitly expected that algorithms for numerical, [21 Becker, Richard A., and Chambers, John
graphical and other calculations will be supplied as M., Extending the S System, Wadsworth,Iinterfaces to C or FORTRAN code. Several Belmont CA, 1985.
approaches to implementing this interface are [1BceRcadAadCabrJh
possible. The current prototype uses special
functions in the language that map into suitable M., "Design of the S System for Data

calls to subprograms in C or FORTRAN (or other Aayi" om Cvl 7(a
low-level languages if needed). A table of currently194,8-95
used subprograms and a C-language routine that [41 Kernighan, Brian W. and Pike, Rob, The
executes the actual subprogram call are generated UNIX programming Environment,
by a function in the high-level language, from the Prentice-Hall, 1984.
parsed code for interpreted functions that interface
to C or FORTRAN. New interpreted functions
that do not invoke previously unseen subprograms
do not require any special consideration. The best
approach to invocations of new subprograms
depends on the availability of dynamic loading in
the local version of the loader.

Initial studies of the new system ind a.e
substantial improvemnerts in run-time efficiency, by
comparison to similar computations in S, for many
typical calculations round in application systems
built on S. Future work will include studies of
trade-off% between the ability to redefine everything
dynamically and the desire to speed up a particular
calculation. For example, while a function could be
redefined within a loop and then reused in that

r., same loop, this seems generally unlikely. (One can
construct somewhat practical examples where it
would make sense, however; for example, when a

method is being modified based on previous

assumption that function definitions remain
constant, the code-generation phase can perform
some optimizations of argument matching and
other computations. Before deciding what options
to pursue in these directions, we plan to study the
performance of typical application computations tor
look for the important "hot spots".

*In summary, experience so far has been
encouraging that a programming environment can
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INTEGRATED PROGRAIING; ENVIRONMENTS -

.John Alan McDonald and.Jan Pedersen

Department of Statistics ,
Stanford University

We argue that data analysis has much in common w'ith experimental priogra"niz "

as described in the Al literature. It follows that integrated environments

designed for experimental programming (such as Interlisp-D, Smalltalk, or Zetalisp)

are more suited to data analysis than conventional operating systems (such as Unix). .
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THE MONTE CARLO PROCESSOR °;4

DESIGNING AND IMPLEMENTING A LANGUAGE FOR MONTE CARLO WORK

David Alan Crier

Department of Statistics .=

University of Washington
Seattle, Washington 98195

J-..:
In designing a new computer language for Monte Carlo Experimentation, one needs to in-
clude high level data structures, a large family of functions to generate random quan-

tities and a wide range of control structures, but that is really the very least of it.
Monte Carlo experiments should be designed, just like any other experiment, and hence
a Monte Carlo Language should have a construct which can describe and perform a com-
plicated experiment. In fact, it encourages researchers to design their experiments

more carefully. Monte Carlo work tends to be computationally intensive, and hence a
Monte Carlo Language cannot afford to be too inefficient. The Monte Carlo field is

continuing to advance, and hence a new language must be able to adapt to changes.

The Monte Carlo Processor is a computer package designed to do Monte Carlo Experiment-
ation. The heart of this package is a computer language called MCL, which is a descen-
dent of the languages C and S. It is designed expressly for Monte Carlo Integration

and Experimentation and more care has been spent on such issues as accuracy and com-
patibility with existing statistical software than is found in the existing discrete-
value simulation languages, CPSS, Simula and Simscript. Unlike S, it is translated
into FORTRAN and then compiled, and hence, considerably more efficient. The MCL ]an-

guage contains statements which describe experimental design, variance reduction tech-
niques, random variable generation that are not found in more conventional higher level

languages such as FORTRAN or Pascal.

1. INTRODUCTION

Wh1ile there is a need to improve the computer able. The field of robust methods has contri-
systems we use to analyze data, there is an even buted in this respect because researchers in
greater need to improve the systems we use to do that field are often interested in studying the
Monte Carlo Experiments. The use of Monte Carlo properties of statistics when the nice, mathe-

experiments in statistical research has in- matically tractable assumptions break down.
creased in recent years and is now a fixed part
of statistical research. A recent article sur- The foundation work that has been done to pro-

veving the use of Monte Carlo methods in recent duce statistical analysis packages such as SAS,
years (lauck and Anderson, 1984) claims that BMDP, Minitab, S, as well as other packages,
about 20% of the articles published in 1981 in just hasn't been done for Monte Carlo work.

several of the major journals (IASA, Applied This in part has something to do with the nature
Statistics, Biometrics, Biometrika and Techno- of Monte Carlo experimentation. The process of

metrics) contained some form of Monte Carlo doing a Monte Carlo experiment has more steps in
technique used to justify their methods or re- it than the process of analyzing data. One has %
stilts. There are several reasons for the in- to decide on a question, or set of questions to

creased use of Monte Carlo techniques in statis- answer with a Monte Carlo experiment, design
tical research. One is the increased accessi- that experiment, write a program to perform that
bi Ity of computers in the past decade. Another experiment and finally, analyze the results of

is greater prevalence of computationally inten- that experiment. There are simply more parts
sive techniques such as the bootstrap. Certain- to the process of doing Monte Carlo work than

lv the most important reason, though, is the there often are to the process of analyzing
changing nature of statistics. Statisticians data. There is more choice in how one puts the
are now trying to find the properties of statis- parts of an experiment together in a computer

tics in situations where the mathematical assump- system.
tions make the problem of determining the power

of a test, or the variance or bias of an esti- In their article, Hauck and Anderson (1984)
mator very difficult if not completely intract- point out several problems in many Monte Carlo

The author wishes to thank Catherine Hurley for her help in preparing the talk and this paper,
Andreas Buja and Richard Kroumal for listening to the author as lie sorted out this project and
Daijin Ko for his help, friendship and support.

Questions concerning this system may be addressed to the author at the University of Washington. • , -
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Studies. Researchers often use inferior algo- sample median and the 10% trimmed mean. We are ill
rithms to generate random numbers and do other interested in deciding which is the better of
tasks. Many times they are unaware of the prop- these two estimators and in particular we would
erties of the algorithms they use. Hauck and like to know which one is better to estimate the
Anderson point out an article published in 1981 location of a small sample of data which comes
containing a Monte Carlo Study which made use from a symmetric long tailed distribution. In
of the random number generator RANDU, an algo- this case we will decide that the estimator
rithm whose inferior properties have been known which has the smallest variance is the best and Ii
for 15 years. In addition, they don't always we will use the Contaminated Normal family of
carefully design their experiments to explore distributions to study these estimators. (For

the properties of the statistics In the situa- our purposes here, a Contaminated Normal distri-
tions in which they are interested. Parameters bution is a distribution in which an observation
are chosen in haphazard ways which don't allow comes from a Standard Normal (I - 7) 100% of the

*the researchers to draw the kinds of conclu- time and Y 100% of the time from a Normal dis-
sions that they would like to draw. Finally, tribution with a variance o2.
researchers don't analyze the results of their
experiments with the kind of care that they The general technique we will use will be to:
should bring to a data set. Often results are
published in tabulated form with little analysis, 1) Generate a set of random data on the
graphical display or summary. My system is de- computer having a Contaminated Normal
signed to attempt to address these concerns, distribution.
The core of the system works within rhe frame-

• work of the traditional statistical Design of 2) Apply the median and the 10% trimmed

Experiments setting. The experimenter is ex- mean to the random data set.
pected to design an experiment to answer some
question about a statistic or family of statis- 3) Replicate the process of generating
tics. My system will take a description of data and applying the statistics, r
that experiment and perform it. It will also thereby collecting many estimates of

* take the data produced bv that experiment and the median and 10% trimmed mean.
load it into a statistical package, such as S
or Minitab, for analysis. 4) Calculate the sample variance of our

sample of medians and of our sample of
2. BASIC PROBLEM 10% trimmed means.

Before describing the system which I've been 5) Study the results.
working on, it might be a good Idea to present
the type of problem which the system is designed The plan for our experiment is not quite com-
to solve. There are at least three kinds of plete. The Contaminated Normal family of dis-
Monte Carlo simulations done in this world: tributions has two parameters, the fraction of
Monte Carlo Experimentation to determine the contamination, 7, and the contamination var-
properties of some kind of statistical procedure, iance, a

2 
. There is the additional parameter

Discrete Event Simulation in which a Queuing of the size of our data sets, which we will call
Network or Flow Chart Model is simulated on a K. We must choose values for these rirameters
computer and Monte Carlo Integration in which a and organize these values into a Designed Ex-
complicated, multidimensional integral (such as periment. We will choose six samples sizes, 10,
ones found in Nuclear and Particle Physics) is 20, 30, 40, 50, 100. We are interested in small

%estimated using Pseudo or Quasi Random Numbers, sample sizes, which the values 10 to 50 repre-
My system is designed to tackle the first kind sent, but to make sure that we include all the
of simulation, what I call Monte Carlo Experi- sizes of interest we choose one larger sample
mentation, although many of the Monte Carlo size, 100. The design of our experiment will
problems done in Physics could be handled by it. involve looking at every possible combination of
There are several systems to do Discrete Event the parameters, what is called a factorial de-
Simulation. While statistical Monte Carlo Ex- sign in the Design of Experiments literature.
perimentation could be done and while I want my Finally, we have to choose the number of times
system to have the capabilities to do it, It we will replicate the experiment for each design
presently lacks certain attractive features. In point. A number of criteria are involved in
order to do Discrete Event Simulation special choosing that value, most notably the amount of
data structures such as queues and calendars, computing resources we have available, the
coroutines and some kind of clock mechanism are amount of time we have open to us and the vari-
often desirable. These capabilities to do Dis- ance we'd like our final results to have (in
crete Event Simulation will be installed at a this case, the variance of our estimates of the
later date, variance of the median and 10%'trimmed mean).

Often, the number of replications will have to
It might be best to start with a simple example be chosen from results of a small pilot study,
to illustrate the kinds of problems in Monte a short, small version of the Monte Carlo Ex- ."

Carlo Experimentation. Suppose that we would periment. For our example, we will choose the
like to compare to estimators of location, the number of replications to be 5000 for each point

%
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in our design. A brief summary of our experiment The system which I have been working on to do
is found below in figure 1. Monte Carlo Experimentation produces code which

performs this program (or slightly more compli- I F
Statistics: cated versions of it).

median
10% trimmed mean 3.1 PROBLEM TO BE SOLVED

Design: The example described above points out many of
Factorial the characteristics of Monte Carlo Experimenta-

tion, which my system tries to take into account.

Distribution: Perhaps the most important is that in Monte
Contaminated Normal Distribution Carlo Experimentation we are studying a Mathe-

matical Model for its own sake. We are not
Parameters: studying an approximation to a physical system.

K (Sample Size) 19,20,30,40,50,100 This has several implications for our system.
7 (Percent Contamination) We have strong mathematical assumptions. Our

.01, .05, .1 choice of distributions is done on a mathemati-
a9 (Standard Deviation of cal basis, not necessarily because they approxi-

Contamination) 2,5,10,100 mate a physical system, and hence the algorithms
which must produce those random values must be

Replications: provably correct. We have a careful experiment-
5000 al design because we are interested in the

changes in the mathematical hypothesis. Finally,
Figure I we have one thing which simplifies things some-

what for us, we are not doing Discrete Event
3. TYPICAL PROGRAM Simulation and hence we don't have to worry

about the problems of programming a system which
The basic form of the program needed to perform needs to handle events occurring in time. We
our example experiment, or indeed any Monte might be programming a problem which involves
Carlo Experiment is seen in Figure 2. It, at timeseries or time in a relatively simple way
base, is a pair of nested loops. The innermost such as that but we need not be concerned with
code is contained in a Replication Loop. That queues, servers or calendars or the problems
process of generating data and evaluating sta- associated with them. There is no need for a
tistics is replicated a certain number of times clock mechanism or coroutines.
(in the case of our example, 5000) for each
point in the design. The results of interest to 4. THE MONTE CARLO PROCESSOR
the experimenter (in our case the variances of
the median and 10% trimmed mean) are then com- The real purpose of this paper is to describe a
puted and stored. The outer loop, the design new system which I have been building for the
loop, performs the experiment for each point in purpose of doing Monte Carlo Experimentation.
the design (in our case, a factorial design). That system takes as input, a description of a

Monte Carlo Experiment, and produces as output a
program to perform that experiment. After per-

Basic Program forming that experiment, the system then puts
the results of the experiment into the form
which a conventional statistical package can

~sign read. The researcher can then analyze the data
produced by the experiment. The structure of NLthe system is diagrammed in a flowchart in
figure 3.

pticaio Monte Carlo Processor Structure
LOOP

Generate Date

Evaluate StaUsUisv Program FOTRAN Con

Figure 2 Figure 3
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The core of the system is the Program Generator. The third statement produces a sample from a
It is a compiler which takes as input a program contaminated normal distribution. The function
which describes a Monte Carlo Experiment. This rnorm produces a sample of length k from a
program is written in a new language designed standard normal distribution. The remainder of -
especially for this project. The syntax of this the statement calculates the standard deviation
language is very similar to the language S for each observation in the dataset. The rber"%
(Becker and Chambers, 1984) and hence similar to function produces a set of k bernoulli (0,I)
the language C (Kernighan and Richie, 1977). random variables which are I with probability p.
There have been a few syntactic additions to en-
able a researcher to easily describe a Monte The third and fourth lines of code calculate the
Carlo experiment. There are statements to de- median and the 10% trimmed mean of each dataset
scribe the design of the experiment (the DESIGN and indicate that the system is to accumulate
statement), the parameters for the design, the the variances of those means and medians.
number of replications for each design point and
the quantities to be stored and accumulated for 4.1 THE GENERATED PROGRAM
later analysis (the RETURN statement). The Ian-
guage is a functional language. New functions The output from the Program Generator (the com-
can be added with relative ease by anyone with- piler) is a FORTRAN program which, along with a
out recompiling the whole system. library of FORTRAN routines, actually performs

the experiment. The compiler for this system .
An example of the code is shown in figure 4 be- does not compile directly into object code. -
low. It is a program to perform the experiment The FORTRAN program, along with the FORIRAN li-

involving the median and the 10% trimmed mean brary are compiled on the local machine's FORTRAN

which was described above, compilers. The prime reason for this scheme is

portability. FORTRAN is one of the better de-

fined and more portable languages. This system .'-

E- xample ode generates very conservative FORTRAN code, keep-

Ing close to the FORTRAN 77 standard and uses

only well defined fixed format 10. This will

arraylx, 100)l keep the system from being tied down too closely
to a specific machine. One can also send the

FORTRAN output program to a high speed machine,

designri factorial: such as a Cyber 205 or a Cray, for execution if

'-= 1,20,0.,50~
n *

,100), the local computer proves too slow to do the
sig=(2.5, 10,100). desired experiment. FORTRAN also tends to be a
pO(.0l.0S.1); fairly efficient language. Optimizing compilers

1000i can produce code which is quite good. Hence

there is little to be gained by having this
x <- rnorm(k)s system produce object code. '*.

(rberk,p)(sig-l)+ 1)
4.2 THE FORTRAN LIBRARY -..

returilvar-; median(x)
The FORTRAN Library is a collection of routines

returnivar; mean(x,.05) which perform much of the work to do the Monte

Carlo Experiments. It contains routines to gen-
erate random numbers from various distributions,

Figure 4 do matrix calculations, perform many of the

tasks that one needs to do for computing statis-

The first statement is the declaration of stor- ties as well as calculate many of the conven-
to hold the dataset. The structure x is a tional statistics. They have been carefully

ae dchosen and their methods and properties are well

one dimensional array with maximum length 100. dcmne.Ti irr sesl xadbe
It can have any length between I and 100 and the documented. This library is easily expandable.

functions in the system will use only the amount Using a simple table definition, a user can add

of data actually in the structure at any time. atre

This language supports scalars, single dimen- nized in the language.
sional arrays, multiple dimension arrays and 4 T C ER I

compound structures made up of scalars and

arrays. The Converter Routine manages the output data

The second statement describes the design of the from the experiments. It can convert the data

experiment, deftnes the parameters and states into a form which can be loaded into any one of

the number of replications. In our example, the statisticsl packages like S, Isp, Ninitab,
S we're doing a factorl experiment wit1 para- BMDP, SAS or SPSS. It can also extract subsets .. •
meters k (sample size), sig (standard deviation of data or produce simple files of data whichmtrk(smlsiesg(tnaddvnin can then be fed Into any application program. ""
of contamination) and p (percent of contamina-
tion). The experiment is replicated 5000 times

for each design point.
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S__..j, °~



p°

4.4 THE USER INTERFACE Grier, David, A Monte Carlo Processor, Version
2.0, University of Washington Department of

The User Interface controls the whole system. Statistics Technical Report No. 54, (October
Using it, an experimenter can define new experi- 1984).
ments, edit old ones, start experiments running,
terminate experiments or temporarily suspend ex- Hauck, Walter W. and Anderson, Sharon, A Survey
periments to lighten the load on the computer Regarding the Reporting of Simulation
and then restart them later. Within the User Studies, The American Statistician, Vol. 38,
Interface, the experimenter controls the Con- No. 3, (August 1984), 214 - 216.
verter Routine and can edit experimental output,
direct output to a statistical package or edit Johnson, S.C., Yacc - yet another compiler com-
output. piler, CSTR 32 (Bell Laboratories, Murray

Hill, NJ, 1975).
5. SUDARY

Kennedy, William J. and Gentle, James E., Sta-
The purpose of this system is really two-fold. tistical Computing (Marcel Dekker, New
It attempts to unify the body of information York, 1980).
that a researcher needs to do statistical Monte
Carlo Experimentation. Often an experimenter Kernighan, Brian and Ritchie, Dennis, The C Pro-
cannot do a good experiment without searching gramming Language (Prentice-Hall, Englewood
the literature of Statistics, Computer Science, Cliffs, NJ, 1978).
Numerical Analysis and Operations Research. Its
second goal is to improve the way Monte Carlo Knuth, Donald, The Art of Computer Programming,
Experiments are performed and analyzed. It does Volume 2, Second Edition (Addison-Wesley,
this by casting the whole process of programming Reading, MA, 1981).
an experiment into the classic design of experi-
meats framework and by giving the experimenter Lesk, M.E., Lex - a lexical analyzer generator, "
the support to help analyze the results. The CSTR 39 (Bell Laboratories, Murray Hill,
result is to give a researcher greater freedom NJ, 1975).
in preparing and performing Monte Carlo experi-
ments. Rather than worrying about finding good Rubenstein, Reuven Y., Simulation and the Monte
random number generators or the details of coding Carlo Method (John Wiley, New York, 1981).
a particular experimental design, the researcher
is freed to work on questions more closely re-
lated to the study in question. There is more
time to try different pilot studies to test
ideas before doing a big Monte Carlo Experiment.
It is easier to consider the use of variance re-

." duction techniques, which may speed the experi-
ment or improve its accuracy. Just as upper
level computer languages free programmers from ., -

being concerned with many of the details of pro-
gramming, this Monte Carlo System frees experi-
menters from the details of programming Monte
Carlo Experiments.
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Choosing Smoothing Paameters for Density Estimators

~~David W. Scott .

~Department of Mathematical Sciences
Rice Universityouston, Texas

~~For data analysis in one, two, and three dimensions, nonparametric density estimation has proven to be a power- .-.ful tool. A major practical problem in density estimation is the choice or smoothing parameters, to which the

". estimates are quite sensitive. There are three different approaches for choosing a smoothing parameter, assuming
". ~little a priori information: (i) interactive graphical evaluation of the smoothness of the density estimate or its , -i
• ~derivatives; (ii) minimization of cross-validation criteria; and (iii) use or upper bounds as in oversmoothed den- -

sity estimates, In this paper I describe these approaches, review theoretical results, and examine small-samplebehDvVird So

"" ~1. Introduction.".
f' !~~~~~~ shall consider two kernels: the Gaussian kernel ( ) -/ 'Automation of decisions required in statistical procedu res Sie h es "

' ~~~is highly desirable. The resulting expert systems can be widely ndhetwihtkrl32(l Sl s~ )  h mohn .-circulated and, contrary to popular belief, are likely to stimulate parameter in Equation (h.1) is the bandwidth h. For the his
growth in the profession. More importantly, these systems gram, the smoothing parameter is the bin w hich will also

encourage the user to understand the role of assumptions in sta- be denoted by h. Smoothing for series estimators may be con-
stistical models and how to cope with situations where thse trolled by the number o terms in the series expansion or by

litlssump ifomtions fail ittsia roeue urntlyactied aphca evaluaith sarmootersmiof t dnIty estimtho.t

capable of dealing with a broad range ofr models are often per- a u p n s m

sit etimte. I tis apr Idecrie hes aprochs, evewTheoretialrute, and t mie etmesll-stampedbth

hceived as too difficult to use and subjective. The subjectivity is integrated meansquared error:
often embodied in the choice oc a kew parameters whose values

•" reflect the expert's judgments about the data's peculiarities. IMSE fE[J(z)-1(z)]2dz .:Multiple linear regression provides a typical example. dt rw t nl
This is favored statistical procedure because it is fully Scott (137)showed that use of anonoptim Tsmoothing param-
automatic. But regression can only be viewed as automatic over eter, say E factor e times the optimal parameter, results in an

growth ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~ S inrese the poeso.Mrimoanlteesses gmhemoth paamtrs tebnwdh hc ilas

a very limited range of probability models. Usually the model be nted by thi forse s a ye
tmust be expanded to deal with outliers, influential points, and (te+2)/3 and (nf+4)/5 (1.2) "
transformation of variables while simultaneously attenptieg to b i a e l o o

select an optimal subset of variables. Box and Cox (11964) intro- for the histogram and kernel methods, respectively. In my.. " %,duced an additional parameter for each variable in their power- experience, reasonable density es are within by; of
atransformation family. Robust regression (iluber 1973) requires optimum. Hence, it is clear that only fairly narrow range o

specifcation o an influence function, which in turn contains values of the smoothing parameter is acceptable for any sample
sape parametrs. Handling influential pointes determi- size, even n=104. The histogram is less sensitive than the ker
is ish fadta istial roedue b us and uelsch nel metod 7 show he of nt smoothing parameter.uom1980). Some of these ideas are addressed in an experimental o is p a t s n

expert system proposed by Gale and Preglbon (1083). Full autoe "ire

mation o f robust regression is clearly a large and difficult tosk, 2. Survey of Pre-1980 Algorithms

especially given current wisdom echoed by Carroll and Ruppert(1985) "that robust estimators should not be used blindly." But f.. Histogramn Methods
it is clear that robust regression is very important and even par-t encrs t icler hat o a ailynaro raeo
tial automation desirablen fco which in turn cni values of t smoothing parameter was given by Sturges (126) for the histogram. Ili proposalIn this paper, we focus on automatic parameter selection was simple and elegant. Consider a histogram with k bins
algorithms for nonparametric density estimators Ideally, we labeled 0,1,...,k-1. Then an "ideal" histogram would have
desire procedures that take data and produce a nearly optimally C(k-J) points in the j bin; adding, the corresponding sample

8)smoothed density estimator for finite mple size. This prob- size is n t C(k- J) 2 s
.  

ne the number of bins and•
le is easier than the regression problem because nonparametric bin width are given by r fc e a o n m
density estimators are robust (although loee automatic elec-
tion prceduusa we o us we may hope to have a lio- k C onsid2e (2. 1ha)iora w

rited expert system for density estimation. In what follows we and . is m
survey pst attempts, describe current resoults, point to new
results, and wonder wtheerin p roble e consensus will be (sample rwe)rk g(2.v1 b)
that "nonparametri density estimators should not be used

blindly." respectively. This rule is given implicitly or explicitly in virtu-ally every introductory textbook. Often the advice is given that
I will limit the discussion to histogram, series and kernel a histogram should have between 5 and 20 bins (from which, I

estimators, paying most attention to the histogram md to ker- suppose, we infer that all samples contain between 24 and 21"
nel estimators, of the usual form points).

1 (2) -L , .-- )) (1.1) foiindScott (1979) analyzed the IAlSE of the histogram and

-r- O.
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1 + where w, are weights and h* are estimates of the Fourier
IMSE = - 1+-A

2
R(J'+0(n2), (22) coefficients /k. Kronmal and Tarter (1968) let wonI and pro-

vided unbiased estimates of the change in the IUSE as m was r
where denotesthe squared Lnom ofhe funcion , increased. They also provided inclusion rules for the 1, terms.

This anticipated the general unbiased estimates or the IMSE by
R() =f O'Xr)

2dz Rudemo and Bowman, which are discussed in section 3.1. .

Unfortunately, as a smoothing parameter, in is a fairly crude

choice. Hence the elegance of this result was somewhat ,"

and is a measure of the "roughness" of 4,. The first term in obscured.
(2.2) is due to variance and the second to bias. From (2.2)t Wahb (1977, 1981) shifted the smoothing parameter away b_

follows that optimally (asymptotically) from m, which she took as a/2, to a continuously varying

/R(')tl
-/ 

• (2.3) (smoothing) parameter X in the weights wk: F,ph 16 (2.3).'' "

Comparing (2.3) and (2.1) we see that Sturges' rule asymptoti- w +A (2wk)*

cally has far too few bins and that the IMSE (2.2) is dominated
b r bThrough unbiased estimates of fk and Jfk I", Wahba provided
by errors due to bias. asymptotically unbiased estimates of IMSE(X). Wahba pro-

It should be noted, however, that Sturges' rule is con- posed plotting IMSE(X) and choosing X
° as the minimizer. This

sistent, although not of optimal order. Hence, consistency is essentially the thrust of modern kernel proposals, which differ
results by themselves are not satisfactory. by providing exacly unbiased estimates of the IMSE shifted by

Sturges based his arguments on the assumption that the a constant. Wahba's algorithm has been illustrated in her

data are nearly Gaussian. Tukey (1977) has advocated a similar papers and more extensively analyzed with Monte Carlo

role for the Gaussian density as a reference. Scott (1979) methods by Scott and Factor (1981). But the basic framework

Z. adopted this point of view and advocated using for automatic data-based density estimation was laid with series

h = 3.5&n-
I
/

z 
• (2.4) methods.

Chen and Rubin (1984) have shown this rule is consistent if
0E. 0 I o. Within the class of densities sati rying this and 22.2. Kernel

other technical constraints, rule (2.4) provides estimates of the It is well known that series estimators may be re-expressed

optimal order. However, for very rough densities the rule can as kernel estimates. For data in several dimensions, the kernel

easily provide poor (usually oversmoothed) estimates. It is form is easier to deal with. In addition, very efficient algorithms

interesting to note that the textbook advice of between 5 and 20 for large samples such as the averaged shifted histogram (Scott

bins when applied to Gaussian data corresponds roughly to 1985) approximate kernel estimators. Thus, cross-validation of

50< n < 1500, which is a more reasonable range of sample sizes, general kernel estimators is required.

Freedman and Diaconis (1981) proposed a more robust ver- The first attempt at cross-validation of kernel estimators

sion of (2.4) based on the interquartile range (IQR): did not directly address IMSE, but used a modified maximum-

A =2QRn-i/s likelihood criterion (Hlabbema, Ilermans and van den Brock,
1974; Duin, 1976). Hlermans and llabbema were particularly

which, generally, is at least 30% smaller than (2.4). interested in constructing multivariate kernel estimates of medi-
cal data. Specially, the authors proposed a leave-one-out optim-
ization problem:

2.2. Kernel and Series Methods max ~l.Z ) , (2.8)
Kernel estimators (1.1) were introduced by Rlosenblatt i--

(1956) and Parsen (1962). Several authors have proposed a rule
that parallels (2.4) for Gaussian data with a Gaussian kernel: where j(z) is the kernel estimator with xj deleted and

evaluated at zxar. Scott and Factor (1981) found the small-
h = 1.06n

-
1
/
b . (2.5) sample properties of (2.8) with Gaussian data were quite good,

This follows from the general result for nonnegative kernels: but that (2.8) was sensitive to outliers, as later proved by Schus-

ter and Gregory (1981), Schuster has also proposed a related

IMSE -R(K) -.+ 'h'R(f-)+ 0(n') (2.0a) criterion based on random splits of the data, which seems

promising empirically. The difficult proof of the consistency of

and 
(2.8) was provided by Chow et al. (1983), but Iall (1982) %

h' = [R(K)/i.X' R(f-j'}bn-'/& . (2.6b) demonstrated the optimal order would not in general be real-

nized.

Another informal procedure involves graphtical inspection In 1976, Jim Thompson suggested and I implemented an

of estimates for a decreasing sequence of smoothing parameters, algorithm based on estimating IMSE. Notice in (2.6) that the

Generally, when the estimates begin to display high frequency only unknown quantity is R(f"). We estimated this quantity

noise, a good choice is a slightly larger smoothing parameter; by substituting the kernel estimate itself, which for a Gaussian

see Tapia and Thompson (1978) for some examples. kernel is given explicitly by
"' 3 4 &,2 4 z;]

R- '(/j") (I -] (i-' ,+ /,l 2)e~" (2.9) r

2.2.1. Series 
i~,r - Ij-IW+jl2e (29

" The first modern results for choosing nearly optimal data- where Aq=(x z,)/h. Then, following (2.61), we formed the

based smoothing parameters came with the periodic series sequence:

estimator: +(K "
h, A P(2.10)'C m. LA life(,," +i)''''

A.) -; -. kh c2-.0., (2.7) 
.u'k..

4.
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where A, and A. are the current and next iterates of A, respec- mates the standard deviation of the curve estimates about the
tively. We could have substituted (2.9) into the JAISE expres- true IMSE estimate - this variation is much less than the vari-
sion (2.6a) and proceeded as Waiba but choose instead this ance of the curve (3.3), which was shown by Rudemo (1080) to
fixed point iteration. Not surprisingly, Scott and Factor (1081) be of order O(n-,); see Scott and Terrell (1085). Thus while
found the small sample performance of (2.10) and Wahba's alg- the actual "best" local minimum is quite good in Figure I, we
rithm to be quite similar. Unfortunately, (2.0) does not provide may expect a large percentage of h's to be outside the interval
a consistent estimator of R(f"), but is positively biased (for (.72', 1.35h'), even with such large samples; see Equation (1.2).
small samples, this was unimportant). Removing this bias gives The corresponding curves in the kernel case do not exhibit
an algorithm in the spirit of Wahba (see Scott and Terrell 1985; the variation for individual samples because continuous kernels p .
also section 4.1). As an wide, R(J) and R(f') are consistent, avoid problems due to the bin boundaries; however, the large
while R(I") -oo when using A's given by (2.6b). variation exists and we cannot expect to obtain an A with

Silverman (1978) found a clever way to use the incon- desired accuracy for medium sample sizes with desired certainty.
sistency of fh" in his test graph procedure. lie showed that the Thus the asymptotic optimality theorems do not translate into
fluctuations in the second derivative should be of a certain fixed uniformly good small-sample properties; see also simulations by
size for optimal A. By examining a series of plots of .'" for a Bowman (1984).
decreasing values of A, the site of the fluctuations ma, '--be.-
guessed and an A chosen. This generalizes the visual inspection
method described after Equation (2.6). 4. Some Recent Work

4.1. Biased Crose-Validation
3. Algorithms sines 1980 If we think of the procedures in Section 3.1 as "unbiased"

cross-validation algorithms, then it is natural to think of
3.1. Unbased cross-validation Wahba's method as "biased" cross-validation. We have looked

A new twist in cross-validation came with the introduction at some biased cross-validation algorithms in the spirit of the
of exactly (not asymptotically) unbiased estimates of the IAfLSE Scott-Tapia-Thompson procedure for histogram and kernel
by Rudemo (1980) and Bowman (1981). Consider decomposing methods (Scott and Terrell, 1985). For histograms, we estimate

* the IMSE = Ef(j-f)'dz into three terms:12

IMSE =E fj(z)2 dz-2Efj()(z)dx +ff()2d.. (3.1) R('r- j )-ihA (4.1)

Consider and substitute in (2.2) to obtain

(Ah)= 2 / (3.2) IMSE + . (n,,-n,)2 , (4.2)

The authors show that (3.2) provides an unbiased estimate of which may be compared to Equation (3.3). In Figure 2 (for the
the first two terms in (3.1) while the third term in (3.1) is con- same sample as used in Figure 1) we plot the estimated IMSE
stant. Plotting (3.2) provides an unbiased (pointwisej estimate (4.2). Notice the estimates are not only far less noisy, but also
of the true IMfSk' curve, shifted by the fixed (but unknown) con- provide a good estimate of the true integrated squared error.
stant R(f). Again the cross-validation estimate is that A which The bias introduced is of lower order than the variance. Thus

minimizes the curve. Iall (1983) and Stone (108-1) have shown the roles of biased and unbiased cross-validation for finite sam-
the resulting estimates are not only consistent but asymptoti- pie sizes are not yet clear. Examples with certain mixture densi-
cally optimal. In practice, we should not expect very much ties are more favorable to the unbiased procedures for samples

difference between (3.2) and Wahba's proposal, since the bias in n < 1000.

Wahba's IMSE estimator is quite small, of order n-'. For a fixed sample, both (3.3) and (4.2) converge to zero as

This proposal has several remarkable features. First, it is A -oo. Now (3.3) is negative near A ' but (4.2) is clearly nonne-
applicable to any density estimator of the generalized kernel or gative. Ilence (4.2) is actually minimized for hoo; we seek the

delta type. Thus when applied to histograms, a sequence of local minimizer near A'. We also expect h'oo to be a local
smoothing parameters of order n

-
'I' results, while the sequence minimum for (3.3). For small samples, the region in the neigh-

is of order n
-
116 for nonnegative kernels, and or order n -

j/I for borhood of the local minimum where (4.2) is convex may be

appropriate negative kernels. Second, it avoids directly estimat- very small or nonexistent when using the biased methods. This
ing terms such as R(f') in (2.2) and includes tie O(n-') terms as region is much larger for unbiased procedures. Recall the
well. Third, it is easily extended to higher dimensions. Scott-Factor simulation results where method (2.10) occasionally

failed to have a solution. For these cases, the (oversmoothed)
upper bounds given below are very useful.

3.2. Example

For a histogram estimator, I examined the performance of 4.2. Upper Bounds
(3.2) with very large samples of normal data. For equally
spaced histograms with bin counts (na), we must minimize Rules (2.4) and (2.5), which are based on Qaumian models,

turn out to be close to upper bounds on smoothing parameters;
O() 2 n (3.3) see Terrell and Scott (1085). Under various constraints on scale

nih a , I measure, densities minimizing R(f(15 ) may be found. When sub-
stituted into expressions such as (2.3) and (2.Ob), useful upper -

In Figure I, I have plotted o(h) for a N{t0.I) samle with bonds may be obtained. For example, a histogram of a density
n = 10,000, for which A '-.162. Exactly where to place the bins with finite support (a,b) satisfies
is a little problem, and I have chosen zero as a bin edge for all
the histograms. Notice the minimum of the curve is close to A < (6 -s)/( 2 n)/ s  (4.3)
R(f)- I,/21/' -. 2821. But the amount of noise in the Ueful

curve is (initially) surprising. We are actually looking among Useful expressions exist for densities of infinite support, as well .
4 the obviously numerous local minima for the best A. Now it aw for kernel estimators. Rules based on Gaussian models are

can be shown that the variation observed in Figure I approxi- only slightly narrower.

%
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SFigure 1.

-atm Example or the unbiased cross-validation functionfor a histogram with Normal data and n = 10,000.
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m" Example of the biased cross-validation function] with same data as in Figure 1.
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For very small samples, these rules are probably as good
as any. For very large samples, any inefficiency may not be estimates, some authors suggest comparison with a histogram,
important -- we may be willing to accept an oversmoothed but which histogram? It is possible to compare the integrated
IM.SE of 10 ' even though the optimal IA.SE could be 10 . kernel estimate with the sample edf, but the optimal smoothing
This is because the overamoothed density estimates will contain parameters for the cdf and density are different. So croas-
the important features of the true density, though somewhat validation for the density is apparently not as easy a problem.
flattened. The univariate methods may be extended for choosing

smoothing parameters for multivariate estimators (one for each
variable). In my experience where I choose smoothing parame-

5. Diaeualon ters by eye, I find the multivariate case is somewhat ealier than
Rice (1984) has investigated cross-validation results for the the univariate case because of interaction effects, which helprelated problem of nonparametric kernel regression. But that is gauge changes in the density function for each parameter.

an easier problem to diagnose graphically, since the curve may Perhaps cross-validation in this case will be no harder.
be compared to the locations of the points. For kernel density
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ON A CLASS OF MULTIVARIATE DENSITY AND REGRESSION ESTIMATORS -

V. K. Klonias

Mathematical Sciences Department

The Johns Hopkins University
Baltimore, Maryland

We present a class of nonparametric multivariate maximum penalized likelihood

estimators (MPLE) of a probability dknsity functions. The estimates are multivariate

splines with knots at the sample points. The numerical effort for the evaluation of

the estimates is essentially independent of the dimension of the data. Under mild

assumptions the MPLE's are seen to be consistent in a variety of metrics and with

optimal rates of convergence. These density estimators lead naturally to a class of

multivariate regression estimators. Some numerical examples are presented where the

smoothing parameters are estimated from the data by an approach suited to these

spl ines.

I. INTRODUCTION is the distributional derivative I of F . In
n n

Let X -. X in P, pE Z be l.j.d. fact, the classical kernel estimates of the

e I n + density can be viewed as approximations to S

observations from a distribution function F n
with density f and let Fn denote the associated The MPLE's u of v =f considered here are

empirical distribution function. The nonpara- solutions to the following optimization problem

metric maximum penalized likelihood method of (2.1) maxf{n. log oCX 2 - luldp,u E|I)
density estimation (MPLE), introduced by Good i I il'
and Gaskins (1971 and 1980), suggests subiect to u(X) > 0,...,n,

estimating f by the maximizer of the log- where u denotes the Fourier transform of
likelihood minus P(v), a roughness ponalty 1 p

functional which is usually applied on the u I H u ( J luldo < + a}, o
square root of the density v=f For example, 2 s 2 on p --

2 is a positive measure on Rl dominated by the

p(v) = if (v') + 6 f (v") 2, where (t, 6 > 0 and Lebesgue measure, and X > 0 is such that

at least one is strictly positive. In DeMon- u

tricher, Tapia and Thompson (1975), the P 1. The otimization problem (2.1) has

existence and uniqueness of the MPLE's were a unique solution given implicitly by
rigorously established within the framework of

the Sobolev spaces W
2
,m = WEu R) such that u(x) = A-i I.n u(Xi)-IK(x-x ), xE R P,

2 -) m= Ei Z- whr-Lideoe
110 u  11I2 < =,mE +, where L 2 (A) denotes where the function K is determined by K m = 1,

the space of square integrable functions and m = 11', i.e., the MPLE u is a spline function J-

with knots at the sample points. The smoothing
1I ull (u2). For discretized MPLE's see parameters enter through the penalty functional
Tapia and Thompson (1978) and Scott, Tapia and by letting It depend on hi .... ,h > 0, i.e., we
Thompson (1980). For penalties on log f see c

Silverman (1982). We follow hereI he setting 1 p Then, the MPLE u is

in Klonias (1984), and discuss the construction of the form

of the multivariate MPLE's, their consistency, 1 n 1
numrical evaluation and data-based choice of (2.2) u(x) 

-  
n u(X )-(hl''' h

- '-1 -i 1** p
the smoothing parameters. k ( (x-X i  Al, .... (xpXip /hp) ,-(-.

2. THE ESTIMATORS p

where k can be any real function on R , which

For thr, estimation of the probability density integrates to one and k 0. The MPLE of the
in a nonparametric setting, the likelihed can density function is f - u

2
.

n
be c.....idered as a functional with argument

ranginq over a suitable space of density The flexibility in the choice of the penalty .-

furict ions f. If no smoothness conditions are functional in (2.1), allows a variety of kernels

impo',,d on f, the likelihood is uni-tunded anid k in (2.2), which can he chosen in ways that
tie unconstraint maximum likelihood "solution" allow for clearer definition of the "peaks" and
carl I" represented as an average of Dirac "valleys" of the density estimates. In
deltas centered at the observations, i.e., it particular w, can choose

II,



k(x) = (l-c(xTx-l)1Q(x), xE P, Note that the gi's do not depend on A which is
1 2

where * denotes the p-variate standard normal then determined by the equation f u 1, i.e.,
density, a kernel corresponding to c=0. For Y n qn (k*k)((X -Xl/h
c=l, essentially we subtract u" from a u based = ii j l qiqI
on , resulting in a spline with improved (X -P h ).

performance at the concave and convex parts of Xip )/ .p p

the density surface. The value of c= , results )T V...

in a kernel with zero second moment and in an Note n theuque ( luio whih olves

estimate with enhanced rates of convergence. optimization problem: t ti

Note that in the last two cases the MPLE u may Tn 2

assume negative values over areas that the data (3.2) min {qT q _ i.llog qi, q E
is very sparse. The density estimate fn how-. ..

ever, remains a proper probability density. 
subject to q-i 

> 
0, i=l,...,n,

where the (i,j)th entry of the positive definite

Under mild moment and smoothness assumptions on matrix T is given by:

the underlying density f, the MPLE's are k((Xi-Xl)/h .,(X. -X.p)/hp).
consistent, with optimal rates of convergence, "i j "l . ip" p p

in a variety of senses, e.g., in the fiellinger The algorithm we use to solve (3.2) is based on

distance, L1 ,L 2, uniform and Sobolev (corre- a truncated-Newton method, described in Nash

sponding to H) norms. Analogous results can be (1982), for details see Klonias and Nash (1983).

derived for the derivatives of f Note that the dimension of the data influences
n only the computation of , so that the numerical

Note that once u(xiYi), i=l,...n have been effort of solving (3.2) does not increase sig-

nificantly with the dimension of the random

determined, it is straightforward to compute the variable. For n=200 and p=2, the solution of

corresponding nonparametric regression estimator (3.2) requires CPU time on a VAX 11/780 of the

m (x) f yfn (x,y)dy/fn (x,y)dy, for details see order of 40 seconds.

Klonias (1984). When the kernel k in (2.2) is a For the data based choice of the smoothing
product of univariate kernels, these regression parameters we propose to max {A(h...h ),

estimates have the appealing property of reducing 1 p-

to the classical nonparametric kernel regression hI 1  h > 01, for details see lonias (1984).

estimators, when the smoothing parameters cor- In the graphs that follow, when h ,h are
responding to the Y's are let to go to zero. 1 2

For example, if (x,y) = k(1 x)k 2 (y) the MPLE of estimated from the data, h I,h 2 were chosen as L
m(x) is given by the minimizers of

(x)n W (x)n, n wunli = [(A/n) -112,

where,

w (x) = [u(X i ,Y.)u(X j ,Y, ) ] - I k l ( ,  -- "kwij h h

"y.-y Y, /

(2 k 2) (\ 2 /

where * denotes convolution. Then, letting

It 2 0 we obtain the kernel regression estimate

X.-,
m (x 1 1XX' h i=1 1, h

3. NUMERICAL EVALUATION OF TIE MPLE'S

Note that (2.2) defines the spline u implicitly
and we need to evaluate u at the sample points.
To this end we set x = X., i=l...,n in (2.2)
and otain the following system of nonlinear
equation:

(3.1) q- =. q k((Xl-X )/h.

(X.ip-X. )/h )'

qi 
= 

(lhl ''hp -% u( - 1 , I. . .n
where q. (Ah h ( (X , P-. n.

FIGURE 1. n=100; based on kernel (3.3).
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where udenotes the MPLE and u denotes the --.-
A ~ n%

solution to problem (2.1) with A'~n, the asymp-
totic value of X. The CPU time required for the IF
numerical evaluation of the MPLE with data based
h ,h 2' for n=200, is of the order 80 seconds.

The data for the graphs that follow was
generated using the IMSL routine GGNML with
DSEED's 255866175 and 1949292845.

FIGURE 4. n=200; based on the standard normal
kernel.

FIUR 2.TeN001,; srae

FIGURE 2. The N (0,0;1,l;0) surface.

Fiqures 2, 5 and 8 are the underlyinq surfaces
which we estimate by the surfaces in Figures 1,
3, 4 and in Fiqures 6, 7 and in Figure 9 re-
sp~ectively. In Figures 3, 6, 9 the smoothing
parameters have been estimated from the data,

S as described earlier. The estimates in Figures -

FIOURE 3. n-200; data hased choice of h; h 1, 3, 6, 9 are based on the following kernel:
based on kernel (3.3). V2



13) Good, I.J. and Gaskins, R.A., [)s.nsity est- (81 Scott, D.W., Tapia, R.A., and Thompson, J.
imization and bumphunting by the |nal ized R., Nonparametric probability density ,[

likelihood method exemplified I'v scattering estimation by discrete maximum penalized-

and meteorite data, (invited japer) J. likelihood criteria, Ann. Statist. 8 1
Amer. Statist. As, c. 75 (198)) 42-73. (1980) 820-832.

[4] Klonias, V.K., On a class of non|arametric [9) Silverman, B.W., On the estimation of a

density and regression estimators, Ann. probability density function by the max-

Stast. 12 (1984) 1263-1284. imum penalized likelihood method, Ann.
Statist. 10 (1982) 795-810.

(5) Klonias, V.K. and Nash, S.G., On the numer-

ical evaluation of a class of nonl.ara,tric 1', Tapia, R.A. and Thompson, J.R., Nonpara-
density and regression estimators. Tech. metric Probability Density Estimation

Report No. 376, Department of Matho.matical (The Johns Hopkins University Press,

Sciences, The Johns Hopkins University. Baltimore and London, 1979).

[61 Lo-onard. T., A Bayesian method for histo-
grams, Biometrika 60 (1978) 297-308.

[7] Nash, S.G., Preconditioning of truncated-

Newton methods, Tech. Report 371, Dept. of

Mathematical Sciences, The Johns Hopkins
Univ. (1982).

-L

-. .

.... .... .... .... .... .... .... .... .... ...

- .. . . . . ... . . ~.. t.



L 'I....

.. o

CATEGORICAL DATA ANALYSIS STRATEGIES USING SAS SOFTWARE

William M. Stanish

SAS Institute, Inc. t
Cary, NC, USA "a

This paper reviews current methods of categorical data analysis, and illustrates how
SASS software can be used to perform the analyses. Topics include: randomization
methods for testing hypotheses under a minimum of assumptions, linear and log-
linear modeling of categorical responses, weighted- least- squares estimation methods
for investigating the variation among functions of proportions, maximum-likelihood
estimation using Newton-Raphson and iterative proportional fitting, repeated
measures analysis, stratified analysis, logistic regression, and the analysis of data
from complex sample surveys. Examples of each type of analysis are given.

1. INTRODUCTION 2. TWO-WAY CONTINGENCY TABLES

The capabilities of SAS software for categorical For two-way contingency tables, PROC FREQ
data analysis have increased dramatically over does an analysis of association that is divided
the past few years. The capabilities discussed in into two or more parts. The first part contains
this paper are available in Version 5 of the test statistics and p-values for testing the null
software, scheduled for release in the middle of hypothesis of no association between the two
1985. The primary procedures for categorical variables. The second part contains measures of
data analysis are association for estimating the strength of any

association that might be present.
* CATMOD procedure (replaces FUNCAT)

In choosing measures of association to use in
* FREQ procedure (replaces TFREQ) analyzing a two-way table, one should consider

the study design, the measurement scale of the
I IML procedure (replaces MATRIX). variables, the type of association that each

measure is designed to detect, and any
The CATMOD procedure does general linear assumptions required for valid interpretation of a
modeling of categorical data, including linear measure. For further information on choosing
models, log-linear models, logistic regression, measures of association for a specific set of data,
and repeated measures analysis. The FREQ see Goodman and Kruskal (1979), or Bishop,
procedure does analysis of association and Fienberg, and Holland (1975, Chapter 11).
stratified analysis. The IML procedure
encompasses an interactive matrix language that Similar comments apply to the choice and
makes it relatively easy to program any interpretation of the test statistics. For example,
customized analysis that is desired, the Mantel-Haenszel chi-square statistic requires

-V an ordinal scale for both variables, and is
The remaining sections of this paper are divided designed to detect a linear association. The
as follows. Pearson chi-square, on the other hand, is

appropriate for all variables, and can detect any
2. Two-Way Contingency Tables kind of association, but it is less powerful for
3. Stratified Analysis detecting a linear association because its power is

3.1 Partial Association Testing dispersed over a greater number of degrees of
3.2 Estimation of Relative Risk freedom (except for 2 by 2 tables).

4. General Linear Model Analysis
5. Log-Linear Models, Maximum Likelihood For 2 by 2 tables, PROC FREQ also computes
6. Models for Ordinal Data estimates of relative risk and their corresponding
7. Repeated Measures Analysis confidence intervals. For two dichotomous
8. Complex Sample Survey Data Analysis variables, D and E, the relative risk of 0 is

defined as
For conservation of space, the printed output
displayed in this paper for any given problem is RR = Prob(D=yeslE=yes)/Prob(D=yeslE=no).
generally only a small portion of the amount
produced by the procedure. Because the definition of relative risk involves

conditional probabilities, the estimation
procedure depends on which variable, if either,
was fixed by the study design. The FREQ
procedure therefore gives different estimates for a).
different study designs.
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For case-control studies (D fixed, E Figure 2 I
random), the estimator of the common STATISTICS FOR TABLE OF FACTOR BY DISEASE

relative risk is the common odds ratio. SASTAT IST IC OF VALUE PROS

F o r c o h o r t s t u d ie s ( E f ix e d , D r a n d o m ) a n d 1--- -----------2-- ----. 10. .. . . . . . ... . .. . . . ..6-- --- ---
for cross-sectional studies (0 and E both CHI-SQUARE 1 2.109 0,146

LIKELIHOOD RATIO CHI-SQUARE 1 2.114 0.146
random), there is a direct estimator of the CONTINUITY ADJ. CHI-SQUARE 1 1.569 0.210
common relative risk. MIANTEL-IIAENSZEL CHI-SQARE 1 2.095 0.148

FISHER'S EXACT TEST (I-TAIL) 0.105
See the SAS User's Guide: Statistics(1985) for (2-TAIL) 0.166
computational formulas and references for all of Pill 0.119
the test statistics and measures of association. CONTINGENCY COEFFICIENT 0.118

CRAMER'S V 0.119

Example

STATISTIC VALUE ASE
The following control statements read some ---------------------- ..... ....... ....... .......-----.
hypothetical data and request an analysis of GAMMA 0.284 0.186
association from PROC FREQ. KENDALL'S TAU-B 0.119 0.081

STUART'S TAU-C 0.097 0.067

DATA ;
INPUT FACTOR $ DISEASE $ COUNT; SOMERS' D CIR 0.097 0.067
CARDS; SOMERS' D RIC 0.145 0.098

YES YES 19
PEARSON CORRELATION 0.119 0.081

YES NO 3 SPEARMAN CORRELATION 0.119 0.081
NO YES 13

NO NO 65 LAMBDA ASYMMETRIC CIR 0.000 0.000

PROC FREQ ORDER=DATA; LAMBDA ASYMMETRIC RIC 0.083 0.075

WE IGIiT COUNT ; LAMBDA SYMMETRIC 0.058 0.052

TABLE FACTOR'DISEASE / ALL;
UNCERTAINTY COEFFICIENT CIR 0.014 0.019

Figure 1 displays the contingency table printed UNCERTAINTY COEFFICIENT RIC 0.010 0.014
by PROC FREQ, and Figure 2 shows the UNCERTAINTY COEFFICIENT SYM 0.012 0.016

corresponding statistics. The statistics indicate a
nonsignificant(a== . 10)" association, with a ESTIMATES OF THE RELATIVE RISK (ROWI/ROW2)
relatively small correlation coefficient (. 12). The
relative-risk estimates suggest that those who are TYPE OF STUDY VALUE 95% CONFIDENCE BOUNDS
exposed to the factor of interest are at least one ------------------------------------------------------
and a half times more likely to get the disease CASE-CONTROL 1.792 0.811 3.962
than those who are not exposed to the factor. COHORT (COLI RISK) 1.583 0.844 2.969

COHORT (COL2 RISK) 0.883 0.745 1,047

Figure 1 3. STRATIFIED ANALYSIS .
TABLE OF FACTOR BY DISEASE 3 T I A L

The FREQ procedure provides an analysis of the
relationship between two variables, after

FREOUENCY1 adjusting for the effect of potential confounding

PERCENT variables. Stratified analysis is similar to the
R RCNT process of fitting a regression model that relates
ROW PCT some function of the dependent variable to a
COL PCT -YES IN( I + - 0FAL linear combination of the independent variable

..ES...19 I 5..... 72 and the confounding variables. The advantage of
YES 1 19 353 I 72 stratified analysis over regression is twofold: (1)• " 12.67 35.33 48.00 " "

2 7.you can adjust for the effect of the confounding26.39 73.61 I variables without being forced to estimate
59- +- -9 [parameters for them, and (2) you can get a much

.O....3 + 6.... +clearer picture of the patterns of interaction and

.67 43.33 I 52.00 the sources of variation since you can look at
I 16.67 3.33 2.0statistics from the individual strata.S 16.67 83.33 ". ,

40.63 I 55.08 I For specifying a stratified analysis of the
........ + - 1 + -+ relationship between variables C and D, after

TOA 323 87 ISO0 adjusting for variables A and B, the required
21.33 78.67 100.00 statements are %

PROC F.EQ;
TABLES A*B*'C*D / ALL;

L1
°° ~~~~~~~~. .... .. oo . . .•....... .=..°. ........ . .. .... ... .-. .. .• o
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On the basis of these statements, one stratum is freedom, is also known as the Mantel-Haenszel .... e
formed for each combination of the levels of statistic. This statistic requires that both the
variables A and B. For each stratum, a row and column variables be ordinally scaled, !e

contingency table of C by D is printed, together and the alternative hypothesis is that there is a A

with test statistics and measures of association, linear association in at least one stratum. When
Lastly, the FREQ procedure prints the statistics there is only one stratum, the Mantel-Haenszel
that summarize the information across the strata statistic reduces to (N-1)r", where r is a
in an efficient way. The following sections correlation coefficient (either Pearson or
pertain to these summary statistics, Spearman, depending on whether the scores are

parametric or nonparametric). "P

3.1 Partial Association Testing
The ANOVA statistic (dr=R-1) "

The class of generalized Cochran-Mantel-Haenszel ----------------------------.
(CMH) statistics (Landis, Heyman, and Koch This statistic requires that the column variable
1978) is an important class of statistics for lie on an ordinal (or interval) scale. The mean
testing no partial association in a stratified column score is computed for each row of the
analysis. They have several major advantages, table, and the alternative hypothesis is that, for

at least one stratum, the mean scores of the R
The assumptions required for their validity rows are unequal. In other words, the statistic
are minimal. They do not require a linear is sensitive to location differences among the R I..,
model, nor do they assume any parametric distributions of the column variable. .-

form for the observed data. They require
only fixed row and column margins for the When there is only one stratum, this CMH A
contingency table in each stratum, and statistic is essentially an analysis-of-variance
these fixed margins can be obtained by (ANOVA) statistic in the sense that it is a
design or by conditional distribution function of the variance ratio F statistic. If
arguments. nonparametric scores are specified in this case,

then the ANOVA statistic is identical to a
They do not require a large sample size Kruskal-Wallis test.
within each stratum. They have a chi-
square distribution when the null If there is more than one stratum, then the CMH
hypothesis of no partial association is true statistic corresponds to a stratum-adjusted
and when the effective overall sample size is ANOVA or Kruskal-Wallis test. In the special
large. case where there is one subject per row and one

subject per column in the contingency table of
The statistics depend on scores for the row each stratum, this CMH statistic is identical to
and column variables. The scores give Friedman's chi-square.
flexibility with respect to the alternative
hypothesis being tested, and they allow the
choice of parametric or nonparametric The general association statistic (df=(R-1)(C-1)) e-4
an aly ses . ------------------------------------------------

This statistic is always interpretable because it
does not require an ordinal scale for either

CMH statistics have low power for detecting an variable, The alternative hypothesis is that, for
association in which the patterns of association at least one stratum, there is some kind of
for some of the strata are in the opposite association. When there is only one stratum, then
direction of the patterns displayed by other the general association CMH statistic reduces to
strata. Thus, a nonsignificant CMH statistic ((N-1)/N)Qp, where Q is the Pearson chi-
suggests either that there is no association, or
that no pattern of association had enough sqaetitc
strength or consistency to dominate any other
pattern. Example

The formulas for the CMH statistics are given in As an example of partial association testing, we
the SAS User's Guide: Statistics(1985). For consider data from a study of the treatment of
additional information on the development of CMH duodenal ulcer (Gri7 .e, Starmer, and Koch
statistics, see Cochran (1954), Mantel and 1969). Specifically, interest lies in the question
Haenszel (1959), Mantel (1963), Birch (1965), of whether there is an association between
Landis, Heyman, and Koch (1978). treatment and the severity of an undesirable

The FREQ procedure computes the following complication of treatment called dumping
types fE pcedure st compuelecting dfllont syndrome. As indicated in Figure 3, severity is
types of CMH statistics, reflecting different ordinally scaled (none, slight, moderate), and
alternative hypotheses, treatment is also ordinally scaled since the

The correlation statistic (df=l) treatments correspond to the percentage of the
---------------------------------) stomach removed during a surgical operation.

The correlation statistic, with one degree of The hospital at which surgery was done

- .j.*'',.****'***'**'**.**j**i-*~. ... . .-...



represents a potential confounding variable which F 4g., 4

needs to be controlled in the analysis. ANALYSIS OF ODUM'ING SYNDROE DATA *
SUMMARY STATISTIC.; FOR TRT BY SEVERITY

Figure 3 shows the control statements required to CONIROLLING FOR HOSPITAL

do both a parametric and a nonparametric
stratified analysis. As shown in Figure 4, the
general-association and the analysis-of-variance COCrHRAN 4IANTEL-JIAENSZEI. STATISTICS (BASLE ON TABLE SCORS),

CMH statistics are nonsignificant (a=.05), but STATISTIC ALIERNATIVE IIYPOTttESIS DIF EAI.E '(,,R9

the correlation statistics are significant (p<.02) -------------------------------------------------------. -- I
t This indicates that there is a linear association in I NONZERO CORRELATION I b.3 0 0012

at least one of the strata, and it illustrates the 2 ROW MEAN SCORES DIFFER 3 6. S90 0,0,,
value of having statistics that have their power 3 GENERAL ASSOCIATION 6 -SIS 01(2

concentrated on narrowly defined alternative
COCHRAN-MAN1TL-HAVSSZEI. STATISTICS RHASED ON RANK SCI)RElSI

Figure 5 displays the correlation results from the STATISTIC ATERNAME SNIRKSIS DV %A1. I FHOH
individual strata. The source of correlation and -TA'rl -T -- A -,T ---AT --- --------------------------------
the pattern of interaction is very clear: the I NONZERO CORREI.ATION I S, "3 O0.01

linear association between treatment and severity 2 RO "lEAN SCORES 1)(lfER 3 _.234 0 1-"5

arises only from hospital 2. 3 GENERAL. ASSOCIATION 6 101.9h 0 102

TOTAl. SAILE SIZE = 417 .
Figure 3

Figure 5
" DUMPING SYNDROME DATA Correlation Analysis by Stratum

Sample Pearson Mantel-Haenszel
INDEPENDENT VARIABLES Hospital Size Correlation Chli-Square DF Prob

"1. TREATMENT(OPERATION) 1 148 0.10 1.57 1 .21

,I A. DRAINAGE AND VAGOTOMY
I B. 25.* RESECTION AND VAGOTOIY 2 105 0.26 7.06 1 .01

C. 501. RESECTION AND VAGOTOMY
•, D. 75. RESECTION
I 2. IIOSPITAL(1, 2, 3, 4) 4 90 0.09 0.66 I .42

I"DEPENDENT VARIABLE 3.2 Estimation of Relative Risk

I"SEVERITY OF DUMPING SYNDROtNE As in the case of a single two-way contingency
.. ,(NONE, SLIGHT, MODERATE) table, the estimate of relative risk depends on

I the study design, and thus PROC FREQ gives
REFERENCE: GRIZZLE, ET AL.(1969), ; eparate estimates for the different designs.

BIOMETRICS 25, 489-504. Also, it uses two different methods to obtain the
--------------------------------------------- "; estimate and its corresponding confidence

interval.
PROC FREQ ORDER=DATA;

"~*WEIGHT WT; Mantel-Haenszel estimate, with a test-based

TABLES HOSPITAL*'TRT'SEVERITY / ALL; confidence interval
TABLES HOSPITAL*'TRT*SEVERITY / ALL SCORES=RANK;
TITLE 'ANALYSIS OF DUMPING SYNDROME DATA'; Logit estimate, with a precision-based

confidence interval

A major advantage of the Mantel-Haenszel (MH)
estimator over the logit estimator (Woolf 1955,
Haldane 1955) is that cell frequencies of zero
pose no computational problem for the MH
estimator. Thus, there is no need to add 1/2 to
certain cell frequencies, as is sometimes
necessary with the logit estimator and its
corresponding confidence interval. Ur_

%_-L%
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The test-based confidence interval has some Figure 6
theoretical problem s because it is based on the --... .. .. .. .. .. . .. .. ....-- - - - - - - - - - - - - - - - - * KI'
assumption that the Cochran-Mantel-Haenszel test DETERGENT PREFERENCE STUDY
statistic has a chi-square distribution, which is
true only when the null hypothesis of no partial
association is true. However, from a practical DEPENDENT VARIABLE VALUES 4
point of view , the bias seems to be very small ........ "-- - - " .

when the parameter of interest does not differ BRAND = BRAND PREFERRED i, X
greatly from I (say, for 1/4 < RR < 4).

The formulas for the estimators are given in the INDEPENDENT VARIABLES VALUES
SAS User's Guide: Statistics(19

8
5). For ------------------

additional information on stratified analysis, SOFTNESS = SOFTNESS OF WATER SOFT, MED, HARD
relative risk estimation, and confidence interval PREV = PREVIOUS USER OF BRAND M? YES. NO
estimation, see Kleinbaum, Kupper, and TEMP = TEMP OF LAUNDRY WATER HIGH, LOW
Morgenstern (1982).

ample FROM: RIES AND SMITH, CHEMICAL ENGINEERING• "lExample PROGRESS j9(1963), PP. 39-43.

These data are from a detergent preference COX(1970) THE ANALYSIS OF BINARY DATA. P.38
study (Cox 1970). See Figure 6 for a description --- --.............................-- ;
of the dependent and independent variables, and
Figure 7 for a listing of the data and the control
statements required to do a stratified analysis Figure 7
with PROC FREQ. The question of interest for
this example is the following. Is there an TITLE 'DETERGENT PREFERENCE STUDY'; %
association between preferred brand of laundry DATA DETERG;
detergent and previous usage of Brand M, after INPUT SOFTNESSS BRAND$ PREV$ TEMP$ COUNT @a;
controlling for the softness and the temperature CARDS;
of the laundry water, and if so, what is the SOFT X YES IGH1 19 SOFT X YES LOW 57
magnitude of the relationship? SOFT X NO HIGH 29 SOFT X NO LOW 63

SOFT M YES HIGH 29 SOFT N YES LOW 49
SOFT M NO HIGH 27 SOFT N NO LOW 53

Figure 8 displays the contingency table for MED X YES HIIGH1 23 NED X YES LOW 47
stratum 1, and Figure' 9 shows the page of MED X NO IHIGH 33 MED X NO LOW 66
summary statistics from the printed output. The NED N YES HIGH 47 MED M YES LOW 55
CMH statistic is highly significant, indicating MED M NO IIIGII 23 MED N NO LOW 50
very strong evidence of a partial association HARD X YES HIGH 24 HARD X YES LOW 37
between preferred brand and previous usage of HARD X NO HIGH 42 HARD X NO LOW 68
Brand M. This study was a cross-sectional HARD N YES HIGH 43 HARD H YES LOW 52
study, and the contingency tables are set up HARD N1 NO HIGH 30 HARD N NO LOW 42 .-**.

with PREF=M in the first column of each table. ',.
Thus, we refer to the COL1 RISK section of the PROC FREQ;
output for estimation of relative risk. The results WEIGHT COUNT;
indicate that, on the average, previous users of TABLE SOFTNESS*'TEMP*PREV*BRAND / ALL;
Brand M laundry detergent arq about 1 .3
(=I/.75) times more likely to prefer Brand M than
those who are not previous users. Fig..e

D)ETRGEN7T P'REFERENCE. ST1OY

Figure 10 shows a relative-risk analysis by TABLE I 7W1 PREV BY BR^(.
stratum. The results indicate a fair amount of (7ONIROIIANG OR S{)FTNESS-HARI) Ti" =!77GH
interaction, with strata 1, 2, and 3 having
similar estimates (.65, .65, .61), with strata 4 r' ,7_
and 5 displaying a weaker association (.80, .80), NV,()k rvl I
and with stratum 6 showing no association (.99). ,.:N'T'T I
Given the large sample sizes within each stratum, Rr' 1'7" .

one could use the CATMOD procedure to do F . . , ....... , . . I

modeling of the relative risk estimates. I N O I 0 22 1 72

I -167 1 59 33 1
1 41 10 1 ,61 ', 1

FSY 1 43 1 2'4 1
I 3 .94 1 7.27 I 4820

4I 1.86 3S 62 8 -
I 4690j 63

. *. .0. .+

--'= --" .... .. .". -- "--'-" -" ---'-'--" -'-.-. - . . " " .: . . . . . . .- " " " " . . .--- .-'-.-.€ ------- ""

I OTA 1. 73 66 133
7,2.32 47.46 (00.001



9gr 4. GENERAL LINEAR MODEL ANALYSIS

ITURGENT~ PIEiREM:1. Sr The CATMOD procedure fits linear models to 5

''23123 I Ir t t23 I0h IK~ 1221KAM) general functions of categorical data. It does so
'2',.. .;i~t? AV'1.. Is ': 1l' by facilitating transformations of an initial

proportion vector(p) to a function vector(F),
arid by estimating the parameters of the linear ~

j H\2.'... -H.IA:1. S1 Ar Is ri (s I ASI) 0'. .uoBi sti:oL model F(70i XV, where if i s the vector of j
2: 0.2 k02!E li OTIS ~ .22211 'iB underlying probabilities. CATMOD uses one of

I %IVAW CRKEAMI I " 7) 000 weighted-least-squares estimation, available
-: IRI ASSIATION I o 7 000 for- all types of response functions

* ma ximum-likeli hood estimation, available for '

IIlI I ]lff1. '('I'll'. 2.i.Ar2\ 510RIK12 k 1, 1 ~ logistic regression and log -linear models.

Both methods of estimation are BAN (best
I ' 1, M 2 if,2 Flt20 .1: V 2 21:0 O.1. ROC)10 asymptotic normal), and therefore they are

-'22' ~ ,I23IAVNS0"U 0.;W , 3 asymptotically equivalent. After the parameters
K."s k.II I 1 0.2 5W 0, 2442 5.2731 are estimated, CATMOD computes a goodness-of-

fit test, as well as Wald statistics for testing
"I~, 2.41.iii'0i:. 2 0 -,~4 0.83 model effects (such as main effects and

12211' ''(iT 2 72 2~62 0.82. interactions) and other null hypotheses of
'k I '2 'A\Tt.,-ii.2\711. I. ~ .1 . 'l 2.501 interest.

RISK, k2i I2T 2 . 105 .130 1.4,82

PL4 I3 2'\ IW1. 11'4 \22 VS FO 'rif:; 2-i 11LSTI HATES ARE TEST-BASED. The theory for the weighted- least- squares
estimation and the general linear modeling may be
found in Grizzle, Starmer. and Koch(1969). The
theory for the maximum-likelihood estimation and

2. i '2 -20 msrO 111 1'iNIAEITY OF1 TiIVE ODDS2 RATIOS the log- linear modeling is in Fienberg (1980) and
lit -SQ' 32.2. l [IF = 22 PROR221 0. 153 Bishop, Fienberg. and Holland(1975) - The

computational formulas used by CATMOD can be
found in the SAS User's Guide: Statistics( 1985).

* 12232 S\'2 .2 111 LL 2225 IJI

_____________________________________ One can analyze almost any functions of the
original proportions, including logits. marginal

Figure 10 probabilities, marginal logits. means, cumulative
probabilities, cumulative logits, survival

D~etergent Preference Study probabilities, kappa statistics, odds ratios, risk
Relative Risk Analysis by Sti-,ittim ratios, etc. Some of the most common analyses

use linear response functions (for linear models)

Est im.ted or logit response functions (for logistic
Sauupe R~ni'.e ','iron regression and log-linear models). The two

strattiim soFT-NESS TP~IP Si Ze Ri2.k Ch ii-sqiar, examples in this section illusti-ate a linear model -

---- ---------------- --- --- ------- --- --- --- and a logistic regression. Log-linear models and
I HiARD) HIGH2 139 b6-,l 7.03 repeated measures analysis are dealt with in

separate sections.
2 HARD LO)W 199 .50 8.09

3 PIED) HIGH 126 .12 8. "t Example

4 M:) LW 28 7 N 2 54 The first example is a linear model analysis of the
S SOFT i101 IG 1104 .71)8 1.33 detergent preference data used in Section 3. The

control statements required to fit a main-effects
6 SO1T I.22w 222 .9228 0.01 model are

PROC CATMOD;
-. RESPONSE 1 0I;

WEIGHT COUNT;
MODEL BRAND = SOFTNESS PREV TEMP; V
TITLE2 'LINEAR MAIN-EFFECTS MODEL';

Figure 11 shows part of the output printed by
CATMOD. 'li3e design matrix X contains columns
corresponding to the main effects in the model
statement. The analysis-of- variance table shows -

that the model fits the data adequately (Q=8.26,

.......................-. .-.
- ~ -%



df=7), and that the PREV and TEMP main effects the parameters are the weighted-least-squares
are statistically significant (a=.05). The analysis estimates, and subsequent estimates are printed 6!0
of individual parametere gives the parameter for each Newton-Raphson iteration until%
estimates and their standard errors. The convergence is achieved. The goodness-of-fit F
estimated covariance matrix and the correlation test in the analysis -of-variance table is the
matirix of the estimated parameters are also likelihood-iatio test, and it shows that the model17
computed upon request. fits the data (Q=8.23, df=7). With respect to the

significance of the main effects in the model, the
Wald statistics based on the maximum-likelihood

Figu re ii estimates for the logit model are very similar to
DETERGENT PREFERENCE STUDY those based on weighted- least- squares estimates

LINEAR MAIN-EFFECTS MODEL for the linear model. Predicted cell frequencies

RESPNSE ESIN MARIXare also computed by CATMOD, if requested.
SA(III.E FUNCTIONS 1 2 3 4

1 0.416667 1 1 0 1 Figure 12

2 0.381818 1 1 0 1 DETERGENT PREFERENCE STUDY
3 0641791 1 1 -1 WGIT MAIN-EFFECTS MODEL
4 0.8427 I 0 -1 -1
1 0.410714 1 0 1 1 1 CATMOD PROCEDURE

6 0.431034 1 0 1 1 -I
7 0.6714Z9 I 0 I -I
N 0.539216 1 0 I -1 -1
9 0.482143 I -I -I 1 I MIAXIMOUM LIELIHOGOD ANALYSIS

10 07.3,197 1 -1 -1 -1
I 0.0167 I aI -1 -2Is - LOG CONVERGENCE

;1' 0.4"D4 I -1 1 -1 - ITERATION ITERATION LIKELIHOOD CRITERION

0 0 1372. 72 I
1 0 1372. 72 8.55E-07

ANALYSIS OF VARIANCE TABLE 2 0 1372. 72 6.97E-14

SoDRCE SF CHRI-SQUARE PROB
---- --- --- --- --- --- ---- _-- _-- --- PARAMETER ESTIMATES

I\TFRCEPT 1 1004.93 0.0001 ITERATION 1 2 3 A 5
SO]E r ESS 2 0.24 0.8859 . . . . . - - - - - - - - - - - - - - - - - - - - - - - - - -

11RE 11 1 20.96 0.0001 0 0.0301634 -.0099095 0.0391404 -0.281692 0.1277

T'PI 3.90S 0.0468 5.3177 -.0094684 0.0400479 -0.283508 0.12:326
2 0.03017 77 -.0094683 0.0400483 -0.2Ra3508 0. 128326

"SRESIDUAL. 7 8.26 0.3100

ANALYSIS OF INDIVIDUAL PARA2IETERS ANVALYSIS OF VARIANCE TABLE

STANDIARD C:91- SOURCE DF CR1-SQUARE PROB
*ErIiICT PARAMETER ESTIMATE ERR('S 9QUARE PROR ......... ................-- - - - - - -- - -- - - -- - - - - - -- - - - - - -- - - - - -INTERCEPT 1 0.21 0.6491

In;o r 1 0.107 17 0,01602. 1004,93 0.0001 SOFTNESS 2 0.22 0.8976
71NES -.002162 .02183q1 0 0I S 906b FREV I 19.70 0.0001

3 .0101S42 .0217W18 0.23 0 6342 TEMP I 3.73 0.0534

T(REA 4 -.0.71088 0155289 20 96 0."001
5 .0319446 0,016071 3.90 0 04b0 LIKEIHOO)D RATIO 7 8.23 0.3129

*Example 5. LOG-LINEAR MODELS, MAXIMUM LIKELIHOOD

*The second example is a logistic regression General log-linear modeling, with hierarchal or
analysis of the same data. The response nonhierarchal models, can be done by the *-

functions to be analyzed are the logits. but the CATMOD procedure. Both3 weiglhted-leaSt-squares
required control statements do riot include a and maximum-likelihood (ML) estimation are
response statement since logits are the default available. CATMIOD uses Newton-Raphson
response functions: iteration to obtain its maximum-likelihood

estimates. If one has a large hierarchal model.
PROC CATMOD; then iterative proportional fitting (IPF) is a more

WEIGHT COUNT; efficient method of ML estimation, and the IPF
MODE L BRAND = SOFTNESS PREV TEMP function in thle IML procedure can be used for

/NOPROFILE NODESIGN NOPARM ML; this pur-pose.
I ITLE2 LOGIT MAIN-EFFECTS MODEL';

The basic log-linear model for one population may
The NIL sperification i19 the MOCDEL statement be expressed as

-. requests mnaximum- likelihood estirnation of the
parameters. v1 = exp(Xf) / 1'exp(XO)

*Fiquire 12 shows tlhe maximum -likelihood analysis where r is the vector, of multinomial probabilities
of the data. The initial estimates (iteration 0)) of for the population. Because of the restriction



I7
that the probabilities add to one, an equivalent The RESPONSE statement specifies the analysis '.I
way of expressing the model is of generalized logits and the creation of an

F• Clg~) output data set containing predicted values. The
F(w) = C log(n) = CX0 = X 0 responses to the three drugs are designated as

dependent variables by their appearance on the
where left-hand side of the MODEL statement.

C=( r., - ) . The _RESPONSE keyword in the MODEL

statement indicates that the model is to include

But F(s) is simply the vector of generalized (or sources of variation based on the levels of the
multiple) logits for the population probabilities, dependent variables. The REPEATED statement is
Thus, the latter equations show that fitting a used only to define the -RESPONSE- effect in
log-linear model on the probabilities is equivalent terms of the usual log-linear model main effects
to fitting a linear model on the generalized logits. and interactions. (When there is no repeated
Such a transformation brings log-linear modeling measurement involved in the study, then the
into a general linear modeling framework, so that term REPEATED is a misnomer, but the definition
the power and flexibility of a program such as of -RESPONSE- is nonetheless placed on the
CATMOD can be brought to bear on log-linear REPEATED statement.) The specified model
models, contains main effects for each of the three '

drugs, together with the DRUGA*DRUGB
In particular, the generalization of log-linear interaction. The MODEL statement also requests
models to multiple populations is totally maximum - likelihood analysis, predicted cell
straightforward with CATMOD. Multiple frequencies, and the estimated covariance matrix . -

populations are formed on the basis of of the parameter estimates.
independent (or design) variables, and a
separate multinomial distribution is assumed for Figure 13 shows the results of the maximum- -

each population. The model equations for such likelihood analysis, with the final parameter
multiple population log-linear models can be estimates appearing in the row corresponding to

found in lmrey(1985) and Imrey, Koch, and the last iteration. The analysis-of-variance table
Stokes(1981). gives the likelihood-ratio goodness-of-fit test,

together with Wald statistics for testing the
lmrey(1985) illustrates the use of the CATMOD individual effects in the model. Figure 14
procedure for numerous logit and log-linear contains the estimated covariance matrix of the
model applications, including multiple logistic parameter estimates, along with the table of

" models, quasi-independence, proportional odds predicted cell frequencies and their standard
" models, and a repeated measures (split-plot) errors.

analysis of marginal logits. Imrey also discusses
some of the technicalities of CATMOD, including
the role of the REPEATED statement in log-linear ONE-POPULATION DRUG STUDY
model analysis, the treatment of structural vs. MIX ANALYSIS OF THE JOINT FREQUENCIES
random zeros, and alternative formulations of
logistic models in terms of log-linear models.

,iAXIMUI IIKEIHIIO)OD ANALYSIS

Example LsB -2 l . CONVERGENCE
I-- -IT Y R IO ITIRATION LIKEIHIIIOOD CRITERION

The example is a simple one-population study in - 0 - - 3.0 - - - I

which each subject was given three different I 0 173.029 9.53E-05

drugs, and their response (F=Favorable, _ 0 173.029 5.5SE-09
U:Unfavorable) to each was recordpd (Koch et
al. 1977). The following control statements set up

* the data set and specify a maximum-likelihood PARA'oIEER EsTi]HATES
analysis of a log-linear model: I nEKAT1,v I 2 3 4

(D I.D RI 7 0. 4317 -o,305493 0.51279
A I7 I 4A 0.151448 -0.314281 0.498114

INP'T DRUGA $ DRUGB $ DRUGC $ COUNT @.d; 2 -, 34 0.1, 138 -0,314304 o.43o108
CARDS ;

F F 6 F F U 16 F U F 2 F U U 4

U F F 2 U FU 4 Uu F6 U U U 6

.ROC CA'11 ANAIYS IS OF 'ARIANCE TABLE

W'EIGII COUNT; So)I(VE OF CHI -SQUARE PROB

RESV.NS.E onr=IREO; Dir GA I 0.80 0.3726
SIO[FEI IRUGA.'I)RUGB 'DRUGC = -RESPONSE- ORI ; 1 0.80 0. 3726

/ 'I. COVB PRED=FREQ; I G;: I 4.12 0 0423

RE ATFED 1)83 DW G IM;R I S. 5 o. 0034

/ RESPONSE = DRUGA DRUGB DRCGC IRUGAI'[RUIGB; t, - 62,,
I TII.E 'INE-POPULATION DRUG STUDY'; t1

%
.

TITIE2 ''II.E ANALYSIS OF TIlE JOINT FREQUENCIES';

4

1. -

:% ~~~..-............................--.......................................,......................... .........................................- :....,..-.-



Figur. 14

ONE-POPULATION DRUG STUIY,
ML1 ANALYSIS OF THE JOINT FREQt ENClS FiueFigure 15

ONE-POPULATION DRUG STUDY
IPF ESTIMATION OF THE FREQUENCIES

C(AVARIANCE or EsrI S % 

1 0. 02988 13 -0.0127,843 1. 01- IS - 00.11t,5 - OBSERVED FREQUENCIES "

2 (-.0127843 0 028M0)3 1. 0,,;A - - )2 11, 1 *- %
1. -oMt -la I.oo it!- 8 0.0 '1 -- 3. 7 -I) TABLE COLl COL2 COL3 COL4

4 -, 0(702305', -. 00236) -"3.7 lE - 13 7 . (( )) ROWI 6.0000 16.0000 2.0000 4.0000

ROW2 2.0000 4.0000 6.0000 6.0000

lIED (>131) %AtES MR8 131.0'(((E WlNCT IOS AM, il.I '0TU

3)sErvfU3EI 18 I I)*3r ESTIMATED FREQUENCIES

I1 \CI")N ST'A83 S I'A)A,3RN FIT COL1 COL2 COL3 COL4
SAIP..'t) I.E R N)1813 Nt:1 I N ERROR Ft WT I ON\ ER:813. IS K Ill tIAl.

0 , W73-. -.022473 0 473'12' .t-1-t, T1o RO'1 7.65217 14.3478 2.08696 391304

I L.,o ,9 - ... o4, o74 0 b13b . 1388,(4 0,374o 03 ROW2 2.08696 3.91304 4.17391 7,82609
3 -1 .0)8t1 0.816497 -1 032 O, 3).S330T fl.2314. .,

.0, 83 0.o4497 - .093147 0,-99978 0.287,782 -

0. 81 3) Rl,.49 7 -1.3237t, 0. 3SAK0> 0.223144

...- 3..o9 o..3'4,,7'-893347 I...3), 0. 2o8;2 Since the IPF analysis yields only the estimated0 O. "7715 " .28bol) (10 9 it )9 7 0-t29l,09 '"*=
cell frequencies, one might be interested in

2.28. .I 7.:t217 1.9 505 -i. ;17 running a general linear model analysis of the
3. l 3.2)2, W- ..11 a78 2.W.9 , -"2): predicted cell frequencies in order to obtain

M 2 3 3833 2 - other useful information such as (1) Wald

1 2 1 3A 113 2 .,8 ( s33;) -0sW-3;7 statistics for the individual effects in the model,
1' 4 1 l3: 3 3)104 1 , ' "i .'W , and (2) the maximum-likelihood estimate of the

2 >8.h1, 4. 17391 I.i3 I ,11-1 covariance matrix of the estimated parameters.

The required control statements are the same as
those used previously, except that the observed
frequencies are replaced by the predicted

Iterative proportional fitting of the model is also frequencies in the WEIGHT statement:
available, and may be desirable for those f u i nh E sa t
situations in which the contingency table is very ,------------------------------------------

large and the hierarchal model contains a great DATA P SET PRED; IF _TYPE_='FREQ';
many parameters. For this example, the required DATA DRUG2; MERGE DRUGS PREDICT;
control statements for IPF estimation of the--- ----.....--.-. 3

parameters are PROC CATMOD; '"

PROC IML; WEIGHT PRED_;PROC IHL;MODEL DRUGA*DRUGB*'DRUGC = -RESPONSE-
TITIE2 'IPF ESTIMATION OF THE FREQUENCIES'; MODEL R ORBPRDREQ; = .ESPONSE

/ COV ML COVB PRED=FREQ;
DIM = (2 2 2); REPEATED
TABE = ( 6 26 2 h / -RESPONSE- = DRUGA DRUGB DRUGC DRUGA3DRUGB;

2 4 6 6 ; TITLE2 'ANALYSIS OF IPF-ESTIMATED FREQUENCIES';CONFIG ={ 1 2 ,,"- ''
3); The results, shown in Figures 16 and 17, are a -

CALL [PF(FIT,STATUS,DIM,TABLECONFIG); essentially the same as the previous results,
PRINT "OBSERVED FREQUENCIES "; PRINT TABLE; except that only one Newton-Raphson iteration is
PRINT "ESTIMATED FREQUENCIES"; required for convergence, and the goodness-of-
PRINT FIT(FORMAT=7.5I; fit statistic is zero, as are the residuals.

Figure 15 shows that the cell frequencies
predicted from the IPF algorithm are identical to
those obtained from the Newton-Raphson
algorithm in Figure 14.

'3,.,
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Fig.re 16 CATMOD procedure:

ON-I'OFIP.,ATION DRUG STtllS
ANALYSIS OF IPF-ESTI'IATFo FR I P8 \I2 .Y * log-linear models, using generalized logits

NAXI1UM LIPF.I,IIDI') ANALYSIS* logit models, using cumulative logits.

SUB -2 I OG t R\1fI;rVL,: Cumulative logits (logits of cumulative
I F. . . . . . ..I' TElA'rio,%... Lim .I,- m -io( -I -UD -C:kRir I -)Nprobabilities) are monotonically increasing (or

0 0 1;s3.,lI decreasing), so that the ordinal nature of the
1 0 173 029 ,1 dependent variable is automatically incorporated

into those functions. Generalized logits, on the e'
other hand, do not inherently reflect the ordinal

t'ARA'IETER FsrI' AtES nature of the dependent variable, and therefore
ITErOION I 2 -. the ordinality must be built into the design
--------------. . -------------------------. -. ---------.... m atrix in a general linear m odel.

0 Ii131' 0. 151534 -0. 11 4 W. .'Slog0
1 .1'I',34 0. 151534 -0.51 )0. 0. .98 108

Regardless of whether the model is logit or log-
linear, structural models can be built that reflect
certain hypotheses and take into account the

ANAL.SIS OF VARIA E TAFL: scaling of other variables in the analysis. The
following discussion assumes a two-way table,

SO( W Fp O :111 -SiLt,\F I'k"PO with the dependent (column) variable always
------------------..------------------------------ presumed to be ordinally scaled. Three of the

RI (;h 1 0. 6, 0. 372f most important structural models are as follows.

VRI G0AOR1 G 1 8 5 0034 INDEPENDENCE MODEL --- For the log-
linear model, this structural model implies

LIKE 1111001) 047 0 3 0 . 0 1 . 00001
an odds ratio of 1 for every choice of two
rows and two columns. For the logit model,
it implies an odds ratio of 1 for every

Figure 17

oNF-POPUI.TION DRUG STUDY possible dichotomy of the column variable
ANALYSIS OF IPF-ESTITATED FREQUENCIES and every pair of rows.

ROW-EFFECTS MODEL --- This model is
COVARIANCE OF ESTIMATES used when the row variable lies on a nominal

1 2 3 4 scale. Compared to the independence model,.,
. - it contains one additional parameter for each

I 0 0208M2. -0.0127841 0 -.00236742 row. For a log-linear model with integer
2 00288826 0 -.00236742 column scores, it implies that the odds ratioS0 0 0.0239583 0 *"

- 2 2 -.00236742 0 0.0288826 for 2 adjacent columns and for any 2 rows is
a function of the difference between the row
parameters. For a logit model, it implies
that the odds ratio for any 2 rows is a

I'K),) 0F11.1 \A)iS EoR RESPONSE FUNCTIONS AND FREQUENCIES function of the difference between the row

OBSERVED PREDICTED parameters, regardless of which collapsing
--------.. -------........ is used to form a dichotomy of the column

F1 )00J11 STANDARD STANDARD variable.
S') I 5N')" F.R FINCTION RROR FUNCTION I.ROR RESIDUAl.

I I - (22,471 0,50839 -.022473 0.473942 0 UNIFORM-ASSOCIATION MODEL ---This
3 IO13176 0 44381 0066 1.32176 0.588076 0 model is used when the row variable lies on

- 43147 0,619139 -.693147 0.0 0 an ordinal scale. Compared to the
-1 3.176 0.779066 -1.32176 0.588076 0 independence model, it contains one

6 - 6"3147 0.6 19 1 39 -. 69 3147 0 .5 0
628609 0.606103 -.628609 0.30957 0 additional parameter, 0, that measures the

association between the two variables. For a
I - 05217 2,52S71 7,65217 I q470 0 log-linear model with integer row and
V2 14.1478 3.14207 143478 2....08 0
F' 2 0W6 I 41148 2.08606 0 893302 0 column scores, it implies that the odds ratio
f< I 31304 1.89214 3 91304 1.54811 0 for any 2 adjacent columns and any 2
1-) 08696 1.41148 2.08696 0.89302 0 adjacent rows is exp(j). Such a model is
F. . 1 104 18214 3 91304 1 $4811 0 adjae rw is adjSch od l is
V7 . 17391 1..4112 4.17391 I 33536 0 also called an equal adjacent odds ratio
IR ;2Oq 2 24

, 
7.82609 2.11722 0 model. For a logit model with integer row

scores, it implies that the odds ratio for any
6. MODELS FOR ORDINAL DATA 2 adjacent rows is exp(B), regardless of L "

which collapsing is used to form a dichotomy
A recent book by Agresti(198,1) focuses on of the column variable. Such a model is also
analysis methods that can be used whenever called a proportional odds model.
there are ordinally-scaled variables to be
analyzed. Two of the primary methods of analysis All of these ordinal models can be generalized to
recommended by Agresti can be done with the the case of multiple variables.

*%
%.- --
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Example ANALYSIS OF INDIVIDUAL PARAMETERS ,%

The methods are illustrated with the dumping STANDARD CUI- PR

syndrome data introduced in Section 3. The EFFECT PARAETER ESTIMATE ERROR SQUARE PROBIF
dependent variable, severity, is ordinally scaled MODEL 1 2.4672 0.391377 39.74 0.0001
(with values NONE, SLIGHT, and MODERATE), 2 1./.3336 0.255521 31.47 0.ooo01,

and the independent variable, treatment, is also 3 -.162621 .0655858 6.15 0.0132
ordinally scaled since the treatments correspond
to the percentage of the stomach removed during Figure 20 shows the control statements required
a surgical operation (0, 25, 50, 75). Thus, a to fit the logit uniform-association model. Figure -"
uniform-association model is most appropriate for 21 displays the results of the weighted-least-
these data, and that is the type of structural squares analysis, showing that the estimate and
model fitted here. The variable HOSPITAL is the test of 0 are very similar to those obtained
ignored in order to illustrate the two-variable from the log-linear model. Although the first two
models. columns of the design matrix are parameterized

differently than those in the log-linear model,
Figure 18 shows the control statements required they span the same space.
to fit the log-linear uniform-association model.
The third column of the design matrix reflects, ------------------------------------------------
in a multiplicative way, the ordinal scales of the Figure 20
variables treatment and severity ( (2 1) F r

kronecker (1 2 3 4) ). Figure 19 displays the PROC CATMOD ORDER=DATA;
results of the maximum-likelihood analysis, TITLE2 'LOGIT UNIFORM ASSOCIATION';
showing that the model fits well. The operation WEIGHT WT;
effect is now significant (p=.01) due to the facts RESPONSE 1 -1 0 0
that the ordinal nature of treatment has been 0 0 1 -1 LOG 1 0 0
exploited and there is some linear association 0 1 ,
between treatment and severity. The maximum- 1 1 0,
likelihood estimate of the uniform-association 0 0 1
parameter 0 (-.162) converts to a uniform odds DIRECT TRTMNT;
ratio estimate of exp(-. 162)=0.85 . MODEL SEVERITY _RESPONSE_ TRTMNT;

Figure 18

PROC CATIOD ORDER=DATA; Figure 21

TITLE2 'LOGLINEAR UNIFORM ASSOCIATION'; ANALYSIS OF DUAPING SYNDRO E DATA
WEIGHT WT; LOGIT UNIFORM ASSOCIATION .

POPULATION TRT; C'O""-"
MODEI, SEVERITY ( 1 0 2 CATMOD PROCEDURE

01 1,

0 1 2.

1 0 6 FUNCTION RESPONSE DESIGN MATRIX

0 1 3 SAMPLE NUMBER FUNCTION 1 2 3
1 0 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

0 1 4 1 1 -0.555526 1 1 1
1 = INTERCEPTI' , 2 -2.54273 1 -I I
2 = 'INTERCEPT2',
3 = 'OPERATION' ) 1 -0.635989 1 1 2
FREQ ONEWAY ML tREDICT=FREQ; 2 -1.94591 1 -1 2

3 1 -0.109199 1 1 3
2 -2.10006 1 -1 3

Figure 19 4 1 0.0186921 1 1 4
ANALYSIS OF DUMPING SYNDROME DATA 2 -1.73827 1 -I 4

LOGLINEAR UNIFORM ASSOCIATION

ANALYSIS OF VARIANCE TABLE
ANALYSIS OF VARIANCE TABLE

S',URCE IF CHI -SQUARE PROB IF
SOURCE DF CHI-SQUARE PROB ...............................- --

INTERCEPT 1 45.73 0.O001.
INTERCEPTI 1 39.74 0.0001 -RESPONSE 1 142.29 0.0001
INTERCEPT2 1 31.47 0.0001
OPERATION I 6.15 0.0132 TRTMNT 1 6.37 0.0116

LIKELIHOOD RAIlO 5 4.59 0.4680 RESIDUAL 5 4.57 0.4712
(Fig. 21 continued on next page)
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(Fig. 21 continued from previous page)
ANALYSIS OF INDIVIDUAL PAEA1ETERS with the dependent variable is measured by the

% TNAD S corresponding parailieter.

ESTIMAT ERROR SQUARE PROB In the following analysis of the dumping

I INTERCEII1 1 1.73389 0,256394 45.73 0.000il for none, 0 5 for slight, anid 1 for mioderate. The -

RESPONSE. 2 - .855483 .0717182 142. 21i 0.00011 variables hospital anid treatment are both
TRTMNT 3 -0.22157 .0877552 t- ,37 O.CIIC regarded as nominally scaled:

Figure 22 shows the summary of tests of the PROc rA~IMoD ORDER=l)A'*A;
uniform- association parameter 0, all obtained 6TIGII AIT
from CATMOD. Regardless of whether- one uses a RESP'ONSE 0 0.5 1

logit or a log-linear model, maximum- likelihood or Moilu :%,i SRiTY = RT iiOsPiTAL;
weighted -least-squares estimation , Wald or TITIE2 'MAIN-EF-FECTS MNODE L'

* likelihood- ratio tests, the results are essentially
the same. A similar conclusion can be drawn from The results, shown in Figure 24, indicate a
Figure 23, which displays the results of the significant treatmntt effect. However, if
estimation of B and the uniform odds ratio, treatment is regarded as ordinally scaled (by its

explf) . appearance in a DIRECT statement):

Figure 22 PROC CAT1MOII (1RlER=DATA;
Ana lysis of Dumping Syndrome Dat a WEI(;IIT wr;

.eResults of Testing the Uniform Association Parametelr 0 DIRECT TRTMINT;

RESP'ONSE, 0 0.5 1;

ryj.r I Typeof ypeof Tst estMOD)EL SEVERITY =TRTPINT IIOSPI PAL;

Anilys is Estimation Statistic Staistic 'irob TITLE2 'LINEAR OPERATION EFFECT';

then the results (Figure 25) show even st'-onger
LogI inr.r MIS Wild 5.6I 0.01 evidence of association.

Figure 24
Lorg IL i -ar MIE Wald 6.15 0.01 ANALYSIS OF DUMPING SYNDROME DATA

tiAIN-EFFECTS lIODET,
1,g I 1eat DIIE I.,r* ~ 6.29 0.01l

ILrrg it WLS Wald 6.37 0.01 ANALYSIS OF VARIANCE TABLE -

SOURCE OF CI -SQUARE PROB-

LKIT G' I ndepenidence.) G2 (Uni form Assoc iat ion Mlodel I- - - - - - - - - - - - - - -- - - - - - - - -
10.98 - 4.59 INTERCEP'T 1 248.77 0.0001

n.9TRT 3 8.90 0.0307

HOSPITAL 3 2.33 0.5065

Figure 23 RESIDUAL 9 6.33 0.7069
Anal vs is of Dumiping Synd rome Dat a

Results of Estimating tire Uniform Assrociotior P'arameter
Figure 25

l Iper of Type of Estlmate Stilndlrr ANALYS IS OF DUMPING SYNDROME DIATA

Ant I~ I sFt imrat io~n of 8 rti "P 8), INEAR OP'ERATION EFFECT

lxogI i-aei RAIS -0. 160 0. 0st 0.8s ANALYSIS OF VARIANCE TABLIE

llinri 1lI1 -0.163 0 U i', 0.85 SOURCE UF ClIII -SQUARE PROB

Log It LIS -0.222 0I.05 11 8 .80 INTERCEP'T 1 18.28 0.0001

TRTIINT 1 8.60 0.0034Another powerful method of dealing with an IOPTI .1 059
ordinal dependent variable is to analyze the mean BSIA .1 059

*score of that variable for each population, rather RES IDUAL. II 6.( 0.8284
than) analyzing a set of logits (Grizzle, Starmner,

Irarid Koch 1969). If an independent variable is 7. REPEATED MEASURES ANALYSIS
nominally scaled in such an analysrs, thenr it is
treated as a main effect, arid the analysis is The CATNMOD procedure has a number of features
sensitive to differences among the levels of that that facilitate repeated mePasur1es analysis. They
variable with respect to the mean scolres. If it is include
ordinal ly scaledJ, theh it is treated in a
iliantititlts wav by a single colinn in the design * a REPEATED statemnert that allows one to -

matrix, arid the extent of its linear association
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identify and name repeated measurement the probability of buying the second product,
factors which may reflect, in part, exposure to the

company selling the products. The control
a very general modeling specification that statements required to fit this reduced model are
allows repeated measures to be modeled in
any fashion PROC CATHOl) DRDIR=I)AIA;

WE IGH;T COU.NT;

shorthand specification of commonly used POPUIATION SEEI SEE2;
response functions in repeated measures RESPONSE MARGINALS;
analysis, such as marginal probabilities, 'ODEL BUY1BUY2 = ( 1 0 0 .
marginal logits, and.means. 1 0 0

I 1 0
Repeated measures methodology and the 11 0
corresponding CATMOD capabilities are reviewed I 1 0
in Stanish and Koch (1984) Numerous examples 1 1 1
are given there and in the SAS User's Guide: 1 1 0
Statistics(1985). The following example is a 1 1 I .
simple illustration of an analysis of marginal ( I = 'P(BUY I NO ADS SEEN)',
probabilities. 2 

=  
'SEEING AT [,EAST ONE A)',

3 = 'EFFECT OF AD ,] ON BtY2')

Example / FREQ PRED;---- -TITLE 'AD)VERTI S ING [DATA- --- REDUICEDI O)I' ".:

These data are from a study of the effect of The results of fitting the reduced model are
advertising on sales IBishop, Fienberg, and shown in Figures 27 and 28. The four populations
Holland 1975, p. 274). At each of two time are based on whether or not the subjects saw the
points, subjects were asked if they had seen an sinted responsetwo advertisements. Thle pintd rsos

advertisement for a specific product and if they functions are the marginal probabilities of buying
had bought that product. The question of the two products. 1 he analysis-of-variance table
interest is: what is the effect on sales of the time indicates that the model fits (p=.4)) and that all Ii
between the two interviews, seeing the first of the effects are statistically significant
advertisement, and seeing the second op .5). he parameter estimates and the

advertisement. predicted marginal probabilities are given inFigure 28.:--.
The first model is simply a saturated model to
assess the significance ct the main effects anid Fig,,i 26
interactions of the independent variables and the ADVLR')SINGI DATA---SATURA'ED),DOIEI,
repeated measurement factor. lhe required
control statements to read the data and fit the .
saturated model are as follows: ANAlYSIS OF VARIANCE TAB,E

DATA A; SDURCE ip CII I -SQUARE PR1B
I 5)1 T SE E1 $ SEE2 a BUY 1 $ hY2 $ C UNT >1) .. ' -S"E"

(ARI)DS E)INTERCEPT 468.85 0.O000"
Ni No Ni)S Y.ES 9 N) N ,) i'S ') 15 SEE'1 1 33.60D 0.01)01
N, N No No NO NO NO 493 SEE2 1 12.40 0.0004
YES I S YES ES 83 ES YLS 1 S..E N) 8 SEE I-SEE2 1 12.72 0.0004

YES YES No YES 22 YET YS Ni) NI IE 1 1.06 0.3025
YES No YES )ES 35 YES NO Y.S Nil SEE

' 
R/SIINSE. 4.13 0.0420"

SEE2"*- RESP'ONSE 1t.1 0.04 0q-U *S NO) Nio E S 11 'iFS N N SEE2 'r RESPONSE 1 ().0)4 0,8459
NO YES NES YES 25 NO YES Y, Nil Ii SEE1"SEE2 . RESIONSE 1 0.23 0.6300

NO) YES Nh YE1S 8 Ni) YE S Vi' Vi 32

pR ": CA'IOD) OiRIiER=IIA ; RES I DUAL, 0 0.00 1.0000

WEIGII CoUN' ; NOTE: RESP(NSE = TI ME

RM:SV'ONSE 1ARG INA,S;
i,'I)Eh BtIYl 'BLIY2 = SEE/.IIl-E2 I RIS),NSE ;_

REPEATED "1 ME 2; Figure 27
TITLE 'ADVERTISING DATA--- SATIRAl14J) lPFI,' ADVERTISING IIATA--- REDUCED MODEI,

The results, shown in Figure 26, indicate that
some of the interactions are I'i PUI,ATION PROI.'I l"S "
nonsignificant(p. 111). That fact, toqethler with SAMPLE E

an examination of time marginal probahilities of SAMPLE S .F SEE2 SIZE
bu'ing at the two time points, leads one to a
reduced model that contains two prmnary effects.
One is an effect due to seeing at least one ad, I No N FS 75
which may reflect, in part, exposure to tile 2 N)) YES 75
rmedium (or- media) in which the ads appear. Time 4 YES YES 81

other is an incremental effect of the first ad on
(Fig. 27 continued on next page)
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(i. 27 continued frmpreviouspae

RESPONSE FREQUENCIES 8. COMPLEX SAMPLE SURVEY DATA ANALYSIS

RESPONSE NI.MBER Currently, the CATMOD procedure is not suited
SA'LE 1 :13 4 for the analysis of complex sample survey data

--------------------------------- because CATMOD computes covariance estimates
1 95 15 6 493 under the assumption that the frequencies were

V- 25 10 8 32 obtained by stratified simple random sampling.
3 3 7II28 However-, the IML procedure call be used for
4 83 8 2-2 68 such anr analysis because it contains a very

powerful programming language. This makes it
straightforward to program a !general linear
modeling algorithmn with any desired capabilities.

* FI(7rON RSPOSE ESIG OARIXSince there are already SAS procedures available
FVNCION ESPNSE ESIN NARIXto compute weighted probability and covariance

* SAPLE NUNBER FUNCTION 1 2 3 estimates for complex sample survey applications
------------------------------------ (PROC SURREGRI anid PROC SESUDAANI, the

1 1 0. 180624 1 0 0 IML program Could be used to read a function
2 0.165846 1 0 0 vector and its estimated covariance matrix, and

then do general linear modeling of the function
2 1 0.466667 1 1 0 vector,. Such an IML program has been written,

2 0.44 1 1 0 and it is listed in the appendix.

3 1 0.518519 1 1 0 Example
2 0.567901 1 1 1 - - - -

These data are from the blood lead subsample of
4 1 0.302762 1 1 0 Second National Health and Nutrition Examination

2 0.58011 1 1 1 Survey (denoted NHANES 11, Reference:
McDowell, et al . 1981). Only the data for persons
under- age 18 in one stratunm (out of 32) are
considered here (Landis and Lepkowski 1984).

ANALYSIS OF VARIANCE TABLE The levels of the dependent and independent
variables are given in Figure 29. The question of

S SIWRCE OF ClIII-SOUARE PROB interest is: to what extent are the variables age,
---- --- --- --- --- --- --- --- --- --- --- --- race, and income related to the presence of

(I 't I I No ADS SEEN) 1 133i. 21 0.0001l elevated levels of lead in thne blood?
SEE I\NI A1 lEKAST ONE Al) 1 113.38 0.0)001

EFf ECT 0I' Al) OmI(N BL'Y2 1 9 ) 10 0.0026 The weiqhted probability anid covariance

estimates were comTpu~ted with PROC SURREOR
R1ESIIUAI. 5 5.15 0.3973 (Landis and Lepkowski 1984). The ML program

WLS was then runil With three input data sets in
order to fit a saturated model via weighted least

Figure 28 squares.
ADVERTISING3 IiArA- -- -REDUCED NVl

* One data set, called INPUT, contains the

ANALYSIS OF iNiiiviDI'AI. PARAMFIERS proportion vector and its estimated

SfANDKII 111 -covarmiance niatrix . For- this example, the

SFUFECT 'ARAMETE ElFs rI A3E F E R , k S0 R I k, estinmates were typed in directly ( Figure
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 31). but or-dinar'ily, the estim ates would be

HOS). 1 IL 17 1., 0 1 P-1 1I 1 k I c-titaimed in anl output data set created by
2 () 111,191 0101 il II . PROC SIIRREG R
3 0 75N221 1 tt 0I1

* Annothei data set, called DESIGN, contains
J'FF~cjO %AI.FS IN F~r1NS ItN 1,thme design matix ( Figure 311.

lE~iIFID Cml: p * A third! data set, called TEST, contains C
------ --- ---- -- mat mi-es for- testingu the hypotheses C5=0,

it NW ((is S! AANDl)VI k
*SA'nrl.E N' SEER H NCIOmm FEAR IN I'll,'e tiethr withI labels for- the hypotheses

---- ---- ---- ---- ---- ---- --- ---- -( q i p 3 21 .
I I 150-24 n'~1 ) i -,I i I

2 1.546 ~i,07'iIi 1 2 I..F 1iime I )3 shows t1hat the analysis is invoked

1 0 ' ~ m -._ 7 0 sirniij'I !'N .nlliriq the INII piograilm WL.S Figure
2 i4. i05 1i 78 .121.. 31 a. .. a the contrmoI stateieints required

emm: Os 1 And 3m ue the r e SIl)ts o0f the
1s-t101 .," i",)Au,115 sus Inclulded In the output

~,I.8nhiIliR. - ~Aml .tlhe parmmnt' 1,m nmters; ariid their- standard

errors the pm efhurted fuunctinoms anid their



standard errors, the goodness-of-fit test, and Figure 32
the analysis-of-variance table that contains tests
for all the C3=0 hypotheses specified in the TEST '- CREATE DATASET FOR THE HYPOTHESIS TESTS ----
data set.

DATA TEST;
The results of the reduced model analysis, shown INPUT TITLE $ 1-24 N C1-C8;
in Figure 36, indicate that the fit of the model is CARDS;
barely adequate (p=.09). The age, race, and AGE 1 0 1 0 0 0 0 0 0
income effects are all statistically significant RACE 1 0 0 1 0 0 0 0 0 ,
(a=.05), with the race and income effects being INCOME 1 0 0 0 1 0 0 0 0
significantly more important for the younger age AGE * RACE 1 0 0 0 0 1 0 0 0
group. AGE * INCOME 1 0 0 0 0 0 1 0 0

RACE * INCOME 1 0 0 0 0 0 0 1 0
Figure 29 AGE * RACE * INCOME 1 0 0 0 0 0 0 0 1

NIIANES II BLOOD LEAD SAMPLE ALL INTERACTIONS ZERO 4 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 00001 0

Dependont Variable Levels 0 0 0 0 0 0 0 1

Blood Lead Level <20 g/dI 20+ Figure 33 -__ _- _ _

Independent Variables Levels *---CALL TIlE MACRO TO DO TIlE ANALYSIS ----

TITLE 'ANALYSIS OF COMPLEX SAMPLE SURVEY DATA';

Race Black White TITLE2 'SATURATED MODEL';

Income <$I0,000 $I0,000+ _LS

S ----FIT A NEW MODEL---CHANGE DESIGN MATRIX--Figure TITLE2 'NESTED MAIN EFFECTS MODEL'

---- CREATE DATASET FOR THE PROPORTIONS AND THE COVARJANCE MATRIX---; DATA DESIGN;
DATA INPUT; INPUT Xl-X6;

I Pr IP 
INPUT 

XlPR

CARDS; CARDS;

O.090463217E+0 0 O.384720414E00 0.273269035E00 0 13645761[E.00 1 1 1 0 1 0
0. 175965919E+O0 0. 154594680E+00 0. 1095'0229E800 0.4 2U 068F 01E-O I I I 0 -1 01 1 -1 0 1 0 "='

0. 16897.44 0.-02 0.910836183E-03 0.473521399.-03 0. 4324 ,b330E-03

.2031815 32E-03 D.59097758-03 0.288562763E-O14 0.108497325L-03 I I -1 0 -1 0

1 -1 0 1 0 1
0.91083183E-03 0 ,182321079E-02 0.306286708E-04 0. " "- "7 01,("
-0.269055648E-03 0.984567192E-03 -0. 143051974F-03 -0 432938662L-04 1 -1 0 1 0 -1 " -

1 -1 0 -1 0 1
0,473213'33)E-03 0. 308286708E-04 0. 10562321 0E-02 0, 4054924E-03 1 -1 0 - 1 0 - 1
0.194t27h655E-03 -0 75871606E-04 0 3787147920-03 0.1702 116911L-01 3,

0.432401 330E-03 0. 1083 4710E-03 .4765 1 924 -03 0I 3)128247 )r--
0.22930856W-03 0 18240173E-03 0.25423222E-03 0 143088020-03 *--CREATE DATASET FOR TIE NEW HYPOTHESIS TESTS- -

0 2031813'0-03 -0. 26905064E-03 02 19427 6 -I I 0 -243o 11. -III DATA TEST;
0. 13 ... 12E-02 0 2S303046E-03 0.2273913)2F-03 0 I 1.4,,24 ..01. INPUT TITLE $ 1-28 N CI-C6; %

O'1147738P.-O3 0 RR461921, -03 -0 7701I6080-l O IQ182,.1 31-03 CARDS;
*) I 0.02,110304 J-03 () 196178735E-02 0 3142IOW,.- 4 0 j 37.20 2I:-0,4 MODELI INTERCEPT 5 0 1 0 0 0 0 -. '.

0 2084M,27bI-04. -o) 14305197.E-(13 0 0187 147 21f:-) 3 2,,: 122280-(3 . 0 0 1 0 0 0 • *H
0 22 71(Of3ZV-03 0.314218078F-04 0 42302'1159 0-1) u A14,01 )00-1. 0 0 0 1 0 0

0 W1103.I-( -0 4123A-862F-1(4 0 170211,.91F.- UV1000000 0 0 0 0 1 0
o 17467--.'.E-13 0 83749251.-O. 0 q9814139,W -04 0 11 021210-01 0 0 0 0 0 0

AGE 1 0 1 0 0 0 O0

Figure 31 RACE(AGE) 2 0 0 1 0 0 0

--- CREATE DATASET FOR TIlE DESIGN MATRIX---; RACE(AE (;RU ) 0 0 1 0 0
RAC (AE GOUP1)1 0 0 1 0 0 0

RACE(AGE GROUP 2) 1 0 0 0 1 0 0
DATA DESIGN; RACE(AGEI) = RACE(AGE2) 1 0 0 1 -1 0 0

INPUT xi-X; INCOME(AGE) 2 0 0 0 0 1 0
CARDS; 0 0 0 1

1 1 1 1 INCO'IE(A;E GROUP I) I 0 0 0 0 1 0
1- I-I-I-I INCO'IE(AGE GROUP 2) 1 0 0 0 0 0 1
-I -1 -I - 1 INCOE(AGEI) = INCOME.(AGE2) 1 0 0 0 0 -1
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Figure 34 (Fig. 36 continued)
Analysis of Complex Sample Survey Data ANALYSIS OF VARIANCE TABLE .

-

Saturated Nodel

SOURCE DF CIII-SQR PROB

Estimated Std Predicted Std MIODELIINTERCEPT 5 269.8816 0.0001
Parameters Errors Functions Errors AGE 1 82.3638 0.0001

RACE(AGE) 2 58.1268 0.0001
0.2335 0.0184 0.5905 0.0411 RACE(AGE GROUP 1) 1 57.8449 0.0001
0.1128 0.0127 0.3847 0.0427 RACE(AGE GROUP 2) 1 5.5449 0.0185
0.0930 0.0147 0.2733 0.0325 RACE(AGEI) = RACE(AGE2) 1 27.0114 0.0001
0.0539 0.0108 0.1365 0.0199 INCOMEtAGE) 2 63.0541 0.0001
0.0484 .0094979 0.1760 0.0371 INCOME(AGE GROUP 1) 1 61.3218 0.0001
0.0318 .0069225- 0.1546 0.0443 INCOME(AGE GROUP 2) 1 12.2894 0.0005

.0029277 .0095636 0.1096 0.0206 INCOME(AGEI) = INCOME(AGE2) 1 17.2909 0.0001
0.0143 .0067561 0.0427 0.0108
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APPENDIX * DEFINE A HYPEITHEDIS TESTING MODULE -F

DENEI A MACRO FOR WEIGIHTED LEAST SQUARES ANIALISIS THAT CAN ACCET'; START" TESTS; * START DEFINING THE TEST MODULE.;

IIIR ECT INPUT OF A FUNCTION VECTOR AND ITS I:OVARIANCE MATRIX . . = I TO NIGOACH); * LOp THROUGH THE ATRICED
--- -N = CMI-III-); - NUMBER OF BOWS IN C MAThIX

ACRO ULS C = CH(II:I+N-I,.2:TII); * SET UP THE C MATRIX ;
C = BLOCK(C.I); * AUGMENT THE C NATRIX

---------------------------------------------------------------- C C * B * C'; * COMPUITE TlE SWEEP MATRIX m

SREAS IN TUE VECTOR OF PROPORTIONS AND TilE CO\IARIASCE MATRIX WC(INI,NAII) = 0; - ZERO LOWER RT-HAND E IENT ;
--- - - - - --.- --------.---.---.----.-.-.. .. . .. . . .. . .. .;EC = WC([I:NN+I ); * COMPUTE ESTIMATED CONTRAST ;

-

['AlC I'll; 3 INVOEE Tie MATRIX PROCEDURE VEC = WC(1I:NI:NI); * COVARIANCE MATRIX OF EC
I F [NI [ ' REAl) ALL INTO IN; R SEAD FIROM' INPUT DATA SET
I)N I N)ll ; NDMBER Of PROPORTIONS
v [[NI I.I I ' ; * NEIGRTED PROPORTION VECTOR - ----------------------------------- ... ....... ...... ......-------

Al [Nl' 12 Q ; COVARIANCE (IF PROPORTIONS ; * COMPUTE THE CHI-SQUARE TEST STATISTIC FOR THIS HYPOTHESIS
Al [NA INV(I'F; 3' INVERSE COVARIANCE MATRIX ; - ------------

B2 = SWEEP(W,I:N); 3'SWEEP THE MATRIX
QC = 2( iN+I.N+1II); * COSPITE TEST STATISTIC

READ......ESIGN . .A.RI ...AND .S ... ....O ........... .............. RANK = SUH(VECD IAG(B2)IO)-I; * CONITE DF FOR CII-SNARE ,

* A.D5 IN DESIN MIATIS. AND SET IF FOR AUI;UIA[ lEAST SQUARES ; FYAL ' I - PROBCHI(QC.ANK); * CONFUTE CORRESEONSIAi P-VAlE;

[ ----I.S --;- REA ---.L IN. . .. . . . HEAD. . .. .[ . ..NUT. ;IF PVAL .0001 THEN PVA I.
= . 00 0

1; * ADJUST FOR ROUNISIFF ERROR ;i ,l: ,ES ,;': READ A..,, NIX; *READ DE I ^RIX ;
I NI. S I i 'I NUIIDER (V CIA'(INS IN N
S N VF ISNV X; " CROSSIPRt'ICT OF X WITH X ; .

[... F; CRSSSRDICT (IF S WIT E * ACCUMULATE THE RESULTS IN THE ANOVA TABLEVFr=r'. l INN Ii F; " TOTAL. SIS [(F" SQUARES:

l-Il.SE RB = R II TITLEIlI); * STORE LABEL IN ROWNAE MATRIX

SOURCENOICE,/I RANKEIIQCIIPAL; STORE RESULTS IS ANUVA TABLE
------------------------------------------------------------- - I H - i; - 1INCREMENT TO GET NEST CONT RAST;,

GFT SFIGITED LEAST SQUARES SOLTrION AND G'ODNESS-OF--FIT TEST END; * END PROCESUING OF CONTRAST
.................... .............. .............. ... FINISH; FINISH DEFINING TEST MODULE

P SUEI, I.1 TI, ' SEE 1P T1 SIV. TAE EAUATIONS
PITA Ill r'-1); " VECTOR It ESTIMATED PARA'IETERS-
AI .T Pill I .I CI); " COVARIU'FC ATRIX OF NETA

Pi0 tA11 S" RTIECDIAGIHRTAI), " STANDAID ERRORS OF BETA
A' A , [IT'll " RESIDUAL S15 OF SQUARES m
N. N NI IA \ I lETA i - COlIPITE DE FOR USI -SQt ARE

II S N II R A N " R E S I II A I. D E G R E E S tl E F R E E D O M ' ''. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' '•- --.

1l11 i. PLVA. P RIEDICTEID PRO!'ORTIONS COMPUTE HYPOTHIESIS TESTS AND SET UP ANOVA TARI.
I'l I S C IlIA k. 'C[I IANCF. 'IAT I .'IF I AT - ---------------------------------------------------.------
II'll \-AR IEI'rIIAG(IlIAT Iu STANI'.RI) ERRORS OF FIA USE TEST; I, SAKE TEST THE CURRENT DATASET

S-. START IF-IIIUIN-EISE -IOIDF READ ALL INTO CS(RUNAE=TITLE; R BEAD IN ALL C NATRICES ; -
-II III El 3'IP TFil N. t'\ At N .=' SECIA[. (4UE- -SAT; RATED Hr)DI. SOURCE = I 3; * INITIALIZE TABLE ;
..... >l l .... ; - UNI RN -IISII.......' F I...... P -~l SSONINV F-CAblE RUN TESTS; * RUN TOE IYPOTIIESIS TESTS ; - .a
I I'S. Al N. 3'FINISA II'TAiE'-ELE (IOSUIE R (R(I1,2:NCO(II) 1'; 3' DELETE FIHST EIESENT OE H

(SOIRI:E=S(I('RCE(rZ:NRU(S(:RCEI.I); , DELETE FIRST ROW OF TABLE
DF2 = SOURCUEI,2 I; " COII'SN FOR DEGREES OF FREEDOM.. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .SF. . H = SIIUR(TE([I.2 1; 170 E IIN FUR SEASEUS OF RE FISI - '+

'PRINT iNPIT DATA, )ESIGN lATRIX, AND ESTI'IATEU PARA'ILTERS R = S(IIRCE(I, II)I; ,' COLIIME FOR P"N AIE
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CATEGORICAL DATA ANALYSIS IN BMDP: PRESENT AND FUTURE

Morton B. Brown

Department of Biostatistics
University of Michigan
Ann Arbor, Michigan 48109

The BMDP series of statistical computer programs currently .ontains two programs
for categorical data analysis. One (P4F) enables the user to analyze two-way
frequency tables by various statistics, including measures of association and of
prediction, or multiway tables by fitting hierarchical log-linear models. The other
(PLR) can be used to fit logistic models to data using arbitrary design matrices,
provided the response variable is dichotomous. Both programs have features to build
models in a sequential fashion, such as in a stepwise manner.

The development of P4F and its precursors is described in relation to the evolving
methodology of analyzing two-way and multiway frequency tables. Issues of
computational accuracy are contrasted with those of statistical validity.

A new program for categorical data analysis is being developed. Its features
include an ability to fit linear, log-linear and logistic models. The specification
of the models will be either by macro-level keywords or by design matrices. Both
ordinal and nominal variables can be used in the models. The models will be fitted by
either weighted least squares, iteratively reweighted least squares or iterative
proportional fitting. Methods for semi-automatic model-building will be included.

1. INTRODUCTION

The availability of computer software for
the analysis of data summarized as frequency
tables has changed dramatically within the last
decade. Prior to 1975 the major software
packages only computed statistics for two-way Table lz The development of computer programs
tables, and these were limited to tests for for the analysis of frequency tables.
independence (the chi-squared test and Fisher's
exact test) and related statistics. 1964

. BMDO2S: CONTINGENCY TABLE ANALYSIS
The first major package to provide more

general methods to analyze contingency tables 1975
was BMDP [9]. Its initial program for frequency PIF: TWO-WAY CONTINGENCY TABLES ,
table analysis, P1F, was a conversion of a
program BMD02S from the earlier Biomedical 1976
Computer Programs [8]. In the next six years P1F: TWO-WAY CONTINGENCY TABLES --
programs were added and several (including PIF) MEASURES OF ASSOCIATION
were made obsolete by the development of P4F P2F: TWO-WAY CONTINGENCY TABLES --
(see Table 1). EMPTY CELLS AND DEPARTURES

FROM INDEPENDENCE
PIF incorporated measures of association and P3F: MULTIWAY FREQUENCY TABLES --

of optimal prediction for two-way tables, but THE LOG-LINEAR MODEL
otherwise remained unchan-ed from BMD02S. P2F
was added to allow models of quasi-independence 1979
in the two-way table. Included in P2F were PLR: STEPWISE LOGISTIC REGRESSION
stepwise algorithms for the identification of

extreme cells [3]. The third program P3F was 1981
" developed to fit log-linear models to data in P4F: TWO-WAY AND MULTIWAY FREQUENCY

multiway contingency tables using an iterative TABLES -- MEASURES OF ASSOCIATION
proportional fitting algorithm (14]. Since BMDP AND THE LOG-LINEAR MODEL
was not an interactive package, the user needed (COMPLETE AND INCOMPLETE TABLES)
an easy way to identify the subset of models
that should be fitted to the data. This led to Support of PlF, P2F and P3F was discontinued
tests of marginal and partial association 12,5]. when P4F was released.

* *-.. .....



In 1981 P4F was released [10]. P4F combined Table 2 presents an example of a two-way
tne strengths of the previous programs (PIF, P2F frequency table from the first version of the
and F3F) into a single program. In addition to BMDP manual. The data in this table are
the features described above, it included a more reanalyzed by the current program P4F. OF
flexible manner of identifying structural zeros, Statistics printed by PI and/or P4F are listed
a stepwise algorithm for model selection, in Table 3. As can be seen from the table, some
methods to identify extreme cells or strata and statistics, primarily those involving standard
the Mantel-Haenszel statistic when a set of 2x2 errors, have changed since the inital release of
tables are analyzed. Since its release we have PI. The date of the change is indicated.
made corrections that affect the computations
for data in sparse tables [7] and in tables with The only statistics modified were the
structural zeros. uncertainty coefficients. In deriving standard

errors for these coefficients, Brown [4) noted
2. THE ANALYSIS OF TWO-WAY TABLES that the coefficients were not normalized to lie

in the range from zero to one. The asymmetric
The first version of PIP included many coefficient was unbounded, whereas the symmetric

measures of association (or correlation) and coefficient could not exceed one-half.
prediction. In retrospect, these measures and Modifications in these coefficients were made to
their standard errors were computed without normalize them to lie in the range from zero to
considering the implications of the sampling
framework. For example, the estimate of the. -
standard error of the correlation coefficient
used a formula that assumed that the data were Table 3: A comparison of statistics
normally distributed instead of summarized in a produced by P1P and P47.
contingency table.

Unchanged:
Brown and Benedetti [6] studied various CHI-SQUARE MAXIMUM LIKELIHOOD CHI-SQUARE

approximations for the standard errors of PHI CONTINGENCY COEFFICIENT C
measures of correlation and association for data CRAMER'S V YULE'S Q AND Y
summarized as contingency tables. Using the CROSS-PRODUCT RATIO
delta method [12,13), they derived asymptotic FISHER'S EXACT TEST (I-TAIL and 2-TAIL)
standard error formulas for the product-moment MCNEMAR'S TEST OF SYMMETRY
correlation and Spearman rank correlation. In
addition, they found a modification that Added:
appeared to be less optimistic when used to test TETRACHORIC CORR (added 1977)
the null hypothesis that the correlation or RELATIVE RISK -- MANTEL-HAENSZEL (added 1981)
association is zero. KAPPA (added 1982)

Brown and Benedetti (unpublished) used the Changed:
same type of expansion to derive formulas for A) ASSOCIATION AND CORRELATION
the asymptotic standard errors of measures of

prediction under the null hypothesis and added VALUE ASE VAL/ASE0
these formulas to the program in 1977, but Date of release: 1975 1977 1975 1977

unfortunately the small-sample behaviors of
these statistics were not checked by simulation CORRELATION -.374 .101 .082 -3.72 -4.35

at that time. After simulations showed that the SPEARMAN CORR -.422 .098 .087 -4.29 -4.94
test statistics did not have reasonable GAMMA -.478 .100 * -4.80 -4.81
empirical sizes under the null distribution, KENDALL TAU-B -.344 .098 .073 -4.71 -4.81
these asymptotic standard error formulas fcr STUART TAU-C -.355 .074 * -4.81
predictive measures were eliminated in 1981. SOMERS D -.384 .085 . -4.54 -4.81

-.307 .063 . -4.85 -4.81

Table 2: Example of a two-way frequency table B) OPTIMAL PREDICTION AND UNCERTAINTY

from Dixon ([91, page 293) VALUE ASE VAL/ASE0

Date of release:1975 1977 1975 1977 1975 1981
CELL FREQUENCY COUNTS

LAMBDA-SYM .178 * .089 . 2.00 N/A
SECTION LAMBDA-ASYM .119 * .088 * 1.35 N/A

DR. A DR. B DR. C TOTAL
ATTITUDE 1 1 1l 13 LAMBDA-"-ASYM .144 .179 .099 .075 1.46 N/A

WORSE-NC 1 0 10 11 TAU-ASYM .094 . .030 3.13 N/A
NOCHANGE 8 4 16 28
NC-BETTR 11 7 5 23 UNCERTAIN-SYN .082 .164 .0 .046 0. N/A
BETTER 1 8 3 12 UNCERTAIN-ASYM 1.912 .137 .830 .039 2.30 N/A

TOTAL 22 20 45 87 "unchanged N/A no longer printed

Z[.



one. (The change in lambdc-star was due to an 3. THE CAPBILITIES O, ,P, .L1.
error in progratasing. )

The program P4F was planned to replace all

Once Brown and Benedetti (6] derived the categorical programs previously developed

improved estimators for the standard errors (PIF, P2F and P3F). Many of the capabilities of
under the null hypothesis of the measures of P4F are listed in Table 4.
association and correlation, we included two
different standard errors (ASE and ASEO) for Since P4F can be used to fit log-linear

each statistic. Under the heeding ASE is the models to multiway frequency tables, it is often

asymptotic standard error to be used in building used to analyze or reanalyze data that are
confidence intervals for the expected value of already summarized in a (multiway) frequency

the statistic. A test of the hypothesis that table. Therefore, three methods of input are

the expected value of the statistic is zero is acceptable: raw data in a case-by-variable
given by the ratio of the statistic to its format, processed data as cell indices and V%
asymptotic standard error under the null frequencies and final data summarized as cell .I %
hypothesis (ASEO); this ratio is printed under counts in a frequency table. --

the heading VAL/ASEO.
All the statistics for the two-way table t

The above history raises several issues, were carried over from P1F to P4F. The Mantel-
The changes in the formulas occurred as a result Haenszel and kappa statistics were added.
of work by Benedetti and myself. Some packages
avoid the problem by not including standard A major goal for the development of PF was
errors while others use formulas that are to make available to a wide audience the ability

inappropriate for the sampling framework. The to describe the relationships among the factors
casual user of a statistical program does not of a multiway frequency table by log-linear .
have the ability to evaluate the quality or models. There was a need to provide an easy
source of approximations used within a program, manner to specify models and to identify
especially when asymptotic expansions are possible models.
involved. Also, it is difficult to check
whether formulas are correctly implemented. Log-linear models are specified by listing ."
Although now there are more journals that will the factors or interactions in the minimal

accept articles that evaluate the quality of configuration. If a redundant list is provided,
approximations or compare programs, these the extra terms will be ignored. All models are

articles are not read widely by the community assumed to be hierarchical. That is, if a
that uses these programs for analysis. What are higher-order interaction is specified, all
the program developers' responsibilities to the lower-order interactions and main effect that
research community that uses and trusts the are specified by subsets of the interaction are
software developed? automatically included in the model. .-m

.1o

*Table 4t Some capabilities of P4P. Since there are many possible log-linear
model when a table is multidimensional, it was

FORMS OF INPUT: necessary to include some methods that aid in
CASEWISE the identification of models. When the table is

AS CELL FREQUENCIES two- or three-way it is possible to enumerate
% AS A MULTIWAY TABLE and evaluate all the possible hierarchical

models at a reasonable cost and time. However,
TWO-WAY COMPLETE TABLE: for four-way and higher tables it is necessary

* IALL STATISTICS DESCRIBED ABOVE to screen the interactions for those likely to

contribute to the final model. Brown [5) (see

TWO-WAY INCOMPLETE TABLE: also [21) proposed using tests of marginal and
MODELS OF QUASI-INDEPENDENCE partial association to screen the interactions.

IDENTIFICATION OF EXTREME CELLS These tests are computed by P4F when the

appropriate keyword is specified.
MULTIWAY TABLES:

LOG-LINEAR MODELS In addition, the user can request that

MODEL SCREENING AND BUILDING effects and/or interactions be added or deleted
from a base model in a stepwise manner. This

IDENTIFICATION OF EXTREME CELLS option is very useful when used in conjuction
IDENTIFICATION OF EXTREME STRATA with the tests of marginal and partial

association. The tests are used to screen for a V -A
SPECIFICATION OF STRUCTURAL ZEROS starting (base) model and then the stepwise
SPECIFICATION OF INITIAL FIT MATRIX procedure is used to evaluate the effect ofadding or deleting terms from the model.'"*"

4 PARAMETER ESTIMATION OF LOG-LINEAR MODELS ai o im o

STD ERRORS FOR THE PARAMETER ESTIMATES The user can identify cells that are to be
COVARIANCE MATRIX OF PARAMETER ESTIMATES treated as structural zeros; these cells are

excluded from all analyses. Brown (3] presented
CELL DEVIATES jn algorithm to identify extreme cells

.'..'.. ".......'"".-..".-.,.... ... ...... . .... ....... -.. " .-. , " , "..-'.,. - . .... " "



(outliers) such that at eaCn Step the Most The Smail expected values affect the
*extreme cell was eliminated and treated distribution theory of the statistics. The

thereafter as a structural zero. To evaluate distribution theory underlying the chi-square
the influence of these extreme cells, the statistics is large-sample asymptotic theory
expected values of these cells were estimated which is inappropriate for statistics based on J.
from the log-linear model fitted to all cells as sparse tables. Also, when the model is
yet not eliminated and not defined as structural overpararmetrized, the computer program will
zeros. in P4F each cell defined as a structural print out a solution, but there are many other ..-

zero will have its expected value estimated in equally good alternate solutions with differing
the manner described for eliminated cells. This parameter estimates. one approach often used is
is similar to the calculation of deleted to augment each cell by a constant. Although
residuals in regression. this approach eliminates the numerical problems,

it leaves the problems of inference untouched.
The usual manner in which the parameters of

*the log-linear model are estimated within P4F is P4F uses an iterative proportional fitting
*by applying the ANOVA formulas to the logarithms algorithm to estimate the expected values of a
*of the estimated expected values. This solution log-linear model which restricts the models that

is not possible when either structural zeros are can be specified and fitted. For example, all
specified or at least one of the marginal cells models must be hierarchical. In addition,
in a configuration of the model is zero; i.e., models that incorporate the ordering of indices, I

*there are zero expected values. In either of such as those described by Agresti [1), are not
*these situations P4F forms a variance-covariance available.

matrix and estimates the parameters by sweeping
* (or partially sweeping) this matrix. This

procedure will give correct estimates, although 4. DESIGNING A NEW PROGRAM
* the solution may no longer be unique; i.e., the

problem may be overparaineterized [7). Given the rapid strides in developing new
models for categorical data, it is necessary to

Some of the limitations of P6F are described develop more flexible computer programs that
in Table S. will allow the fitting of such models.

Sparse data in contingency tables can cause Some general goals for a program are:
problems of numerical accuracy and of
statistical interpretation. A sparse table is 1) To make available new statistical
one in which there are many cells with small methodology. For example, Goodman and Kruskal
expected values and one or more observed zeros. [11,12,13] proposed statistics, such as the
When the pattern of observed zeros creates zeros ganmma, lambda and tau, to estimate relationships
in a marginal subtable corresponding to one of among the indices in the two-way frequency
the configurations in the model, there can be table. Other have proposed alternate measures.
numerical problems in the estimation of As long as these measures did not appear in

S.parameters, of expected values and of degrees of computer programs, it was difficult to evaluate
*freedom [7]. Care in implementations of the their usefulness. To interpret the

algorithms can alleviate some of the numerical meaningfulness of the statistics, it is
problems, but cannot guarantee their absence, necessary to compute their standard errors and
Overparameterized models with nonestimable z-scores.
parameters can occur.

2) To provide aids for the unsophisticated
user. For example, special purpose programs to
fit log-linear models (ECTA, GLIM, etc) assume
that the user knows which model is to be fitted

*Table 5: Known problems and limitations of P4F to the data based on an a priori knowledge of
the variables. Identification of the .

SPARSE TABLES: appropriate model was made by testing effects in
WHEN MARGINAL ZEROS OCCUR, TWO MODELS BEING the model or by a stepwise procedure. The
COMPARED MAY DIFFER IN THEIR SETS OF CELLS rationale behind tests of marginal and partial

2,WITH FITTED VALUES EQUAL TO ZERO association in P4F [2,5] is to enable the
investigator to screen all the possible

STD ERRORS MUST BE OBTAINED BY INVERTING interactions for their 'maximal' effect and thus
INFORMATION MATRIX -- MAY REQUIRE TOO MUCH order them in importance.
MEMORY

3) To be easy for a novice to use. This
N ONHIERARCHICAL MODELS: last consideration is critical when planning a

CANNOT BE FITTED new program. For example, how should models be
specified in the general case where the model

ORDINAL CATEGORICAL VARIABLES: may be nonhierarchical or when the factors are
CANNOT BE TAKEN INTO ACCOUNT ordinal or when the dependent variable is -

(EXCEPT FOR MEASURES OF ordinal.
ASSOCIATION IN TWO-WAY TABLE)

* ..., , L ~ . .. . . -



When the only programs available analyzed recently, models have been developed to allow
data in two-a talsndtenl saitc for repeated observations from individuals. In

computed was the chi-square, it was reasonable these models it is recognized that the repeated

to assume that, if the user can run the program, observations from an individual have less
s/he can understand the output. When there is a variation than a similar set of observations,
program such as P4F with a relatively sinple each obtained from a different individual.
means to specify options, users can request Repeated measures models for categorical data
options that produce results which they are not have primarily treated the situation when there
trained to interpret correctly. When planning a is a single response variable, such as voting
new program that starts where P4F stops, which preference, observed over time for a group of N

audience should be addressed: individuals. The models that are fitted to -he
--the unsophisticated user in an applied area, data, end hypotheses tested, describe change

--the statistician with a masters degree, or will be able to be fitted to the data in the new
--the advanced practitioner of statistics, program.

A requirement to specify design matrices Several methods of fitting the log-linear
explicitly would indicate that the last group model to categorical data will be available:
is the target audience. The presence of a4..

totally automatic model search routine would i) Maximum likelihood (ML) using the

not understand the results. Therefore, there is This method is limited to fitting hierarchical
a need to allow different levels of models.
sophistication of usage, where users at the
lowest level would not need access to all the ii) ML using a Newton-Raphson algorithm (NR).

*options (and probably would not desire the This method may require computing a large
excluded options). covariance matrix at each iteration.

Mocdels that are not hierarchical, such as iii) Weighted least squares (WLS). These
those of marginal symumetry, cannot be fitted estimates are not maximum likelihood. The

*within P4F. In addition, the internal structure method does not require iteration but the same
* between cells cannot be specified to P4F. covariance matrix is needed as for the NR
*Therefore, when repeated observations are taken algorithm.

on a variable and each repetition is not treated
as a separate index, P4F is unable to analyze Table 6 summarizes many of the attributes of -

the data. the program that is being developed.

Several forms of models have been proposed
for categorical data. The two most commnonly
used at this time are the log-linear model where Table 6: Attributes of the new program.

In p =linear model MODELS THAT CANl BE FITTED:
LINEAR

and the logistic regression model where LOG-LINEAR
LOGISTIC

ln [p/(l-p)] - linear model.
MODEL SPECIFICATION BY:

Alternative models include writing on the left- MACRO-LEVEL KEYWORDS
hand side either p or the odds-ratio or some DESIGN MATRICES

* other function of one or more p's.
VARIABLES CANl BE:

When the independent variables, or factors, NOMINAL
are not ordered, the usual representation of theODIA

*linear model is the same as that of an analysisORIA

*of variance model. The only difference is that ALGORITHMS:
in the log-linear model the logarithm of the ML USING IPF
expected value, and not the expected value ML USING IRWLS .-

*itself, has a linear form. When one or more WEIGHTED LEAST SQUARES
factors are ordered, it may be possible to write *

the linear model using a reduced set of MODEL-BUILDING:
variables (such as the lower-order terms of an SEMI-AUTOM4ATIC
orthogonal decomposition) for that factor, or INTERACTIVE

* the modptg of Agresti [ll.
TYPES OF MODELS:

Classically, statistics and biostatisticsPOSN
*have been concerned with fitting models to data MULTINOMIAL

such that the deviations of the observations REPEATED MEASURES
from the model are mutually independent. More

%:
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LOG-LINEAR MODELING WITH SPSS
x

I,e

Clifford C. Clogg and Mark P. Becker

Tie Pennsylvania State University -
University Park, Pennsylvania 16802

The recently released software package SPSS
x 
contains two procedures for log-linear

analysis of contingency tables, LOGLINEAR and HILOCLINEAR. LOCLINEAR is based on
Haberman's (1979) program FREQ, and it uses a Newton-Raphson algorithm for calculating
maximum likelihood estimates. LOGLINEAR is probably the most general computer program
for log-linehr analysis now included in major software packages. HILOGLINEAR is based -- °
on the iterative-proportional-fitting (IPF) ,lgorithm and is restricted to hierarchical
models that can be expressed in terms of fitted marginals. We evaluate these two

procedures according to the following criteria: (1) What can be done with the
procedures? (2) Does the available documentation give a suitable description of thise
capabilities? (3) What should SPSSX have done? (Or, what should they do with these
procedures in the future?) (4) What diagnostics and/or warnings are available or
could be made available given current knowledge?

1. INTRODUCTION quantitative covariates may be added to a model
quite easily, logit-type models (or multinomial-

In 1979 Haberman introduced a compuLer program response models) can be readily distinguished
called FREQ that "can be used to compute maximum from the wider class of log-linear models for %

likelihood estimates for any log-linear model" the cell frequencies, normal probability plots
(Haberman, 1979, p. 571). What he meant was that for residuals can be obtained, and an analysis
any model for contingency tables that is addi- association for logit-type models is available.

tive in the logarithms of cell frequencies, when LOCINEAR is not designed to be a stand-alone
the cell frequencies arise from l'oisson, multi- exploratory analysis procedure. But once the
nomial, or product-multinomial sampling schemes, contingency table -- including both the variables
There were three main advantages of FREQ in and the categories used for each -- and a rela-
relation to others that existed in the !970s: tively small number of models for this table are
1. It calculated adjusted (truly standardized) specified, LOGIINEAR is probably the best ("most
residuals (cell by cell) and generalized adjusted general") program for log-linear models currently
residuals for contrasts among cells, in existence.
2. It allowed for adjustment of Poisson frequen-
cies for differential cell-by-cell exposures, Below we describe briefly what LOGLINEAR can do,
thus permitting log-linear analysis of rates of whether the documentation provides a satisfactory
rare events. description of its capabilities, and what could
3. The Cholesky factorization of the estimated be done to improve the program in the light of
information matrix at successive steps in the current knowledge. It is not our purpose to
Newton-Raphson algorithm was done with great compare L.OCLINEAR with other programs. In our

care, and analysts were thereby alerted to non- experience, analysis of contingency tables in
existence problems and related problems that practical research settings usually requires the
arise from sparse data and/or from specifications use of more than one procedure from more than
o quasi-log-linear models, one software package. And it should be acknow-
Tile main disadvantage of FREQ was that users had ledged that computing for contingency table
to supply the model matrix (or design matrix) in models is very primitive compared to computing
complete detail, a difficulty that prevented its for linear models. We are a long way from
widespread use. having computational equipment that is as flex-

ible -- and as believable -- as the procedures

In 1983 the FREQ program was Incorporated in the REG and GILM in the SAS package. And we are even
hO;LINEAR procedure of SPSSx. The most obvious further from the development of intelligent soft-
difference between LOGLINEAR and FREQ Is that in ware like the REX program of Bell Laboratories
the former the model matrix can be created with for regression analysis (Hahn, 1985; Cale and
only a small number of commands using symbolic Preglbon, 1982). Our goal is not to make
representations for the types of contrasts that invidious comparisons but rather to assess
are to be employed. The Kronecker product oper- strengths and weaknesses of the particular pro-
ations that build the model matrix from the var- gram under review. More borrowing of ideas
able contrasts are performed automatically. Many among software developers is called for, and we

options are available for specifying contrasts, hope that the present review points to areas

• ,- , .- • .
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* where such borrowing is most likely to be bene-
ficial.

Estimation is by the Newton-Raphson method,
2. The General Log-linear Model which as programmed is essentially based oniteratively re-weighted least squares (with

LOCLINEAR, like its predecessor FREQ, works with weights that take account of the fixed weights

the following general formulation of the log- w and the approximations for m obtained from .

linear model for frequency data. Suppose that a previous cycle). If z = 0 for some response-
there are J "groups" with the number nj of obser- combination, or if n = 0 (no

vations per group, j - 1,...,J, fixed either by group nj ,i nij 0(n

the sampling scheme or by conditioning. Suppose observations in the J-th group), the procedure

further that there are I levels of response, actually eliminates (gives zero weight to) the
which may represent crossed or nested combina- given response-group combination, or the respon-

tions of response variables. Let nl > 0 denote sea in the J-th group, respectively.

observed frequency in a given response-group All analyses of contingency tables based on

combination, m - E (n ), w a fixed "weight", frequentist perspectives are plagued by the

z a dummy variable taking on the value 0 if the problem of sparse data, regardless of the esti-
ii mation method used (weighted least squares and

i-th response in the J-th group is a structural ML being the two most popular methods). It is
zero (mij = 0) or is to be fitted perfectly useful to distinguish two extreme types of

(,iJ = n j) otherwise taking on the value 1. sparse data:

Finally, let x ijk' I < k < K, denote the k-th Type I. One or more of the n = 0 but n, > 0

column of the relevant model matrix, where K is for all J, j 1 1 ... , J.
the number of parameters to be estimated. The Type 11. Some n1  0, but n > 0 for all

general model is Topbinat ins wj > 0 f a

K response-group combinations where n, 0.
log Zij /w ) - + xijk  These conditions are specified so that they

i j= ij pertain to the multinomial-response model, but

Special cases of this model include the follow- similar conditions apply to log-linear models

Ing: for the set of cell frequencies, in which case
I. Log-linear models for complete contingency the condition n = 0 should be replaced by the
tables: zj wt= 1, all t and J, J = 1. (All th oniin 0soldbepae b h

tl zcondition that observed values of some suffi-

variables are responses or "dependent" variables.) cient stdtistics take on the value zero. A
II. Log-linear models for incomplete tables third case would have some n 0 (no responses
("quasi-log-linear models"): z = 0 for (i,j)ES f o u a m0 r nijfor some groups) and some ni 0 for response- .. '

where S denotes structurally empty response- i.
group combinations that are actually observed

group levels, z = I for (I,j) ES, J = (where n, > 0). To our knowledge, all programs

Ill. Multinomial-response models: J > I (the now in existence give zero weight to responses
dichotomous response logit model is obtained in a void group (n = 0), and estimability may -- -
when I 2). 1

IV. Poisson (or rate) models: w = exposure or may not be affected by this. ML procedures
ii will check estimates of m at each cycle t (say,

(e.g., time in months) for rare event count nt m t when sparse dataof
Ij m(t) whe sprse ataof Type I occur. IfS(Mlere, m /wtisth rate of the rare event for mii~)

II jI m (t) = 0 then most programs will give zero
the (,]) combination, and we will usually want i'
to take J = 1.) weight to that response-group combination in
Cell-by-cell residuals, nt, - mij, are examined all successive iterations. (Curiously, a re-

examination of the offending (i,J) estimated
by comparing them to the estimated asymptotic count in cycles after the first one where the

standard deviation s(nlj - itj). and generalized problem occurs does not seem to be carried out.)
esiduols compare 1, - ) to This effective deletion (fitting a zero expected

- j ij count) might lead to a rank problem for the
( cl(n )), where t c = 0. See matrix of the xt, and when this occurs smart

rill c i j I) .1,j1 i ii' I
Hlaberman (1973. 1978). Dispersion in multinomial programs will delete -- rather arbitrarily it
respo.nse.s (marginal and conditional) Is analyzed turns out -- one or more "columns" of the model

sclng the entropy and concentration measures matrix. Most computational problems in ML, fit-
(laberman, 1982). The program gives estimated ting arise in sparse data situations: when

paramter va ies, chi-squared statistics (Pear- n > 0 for all i and J, there are no problems
son and likelihood-ratio), the variance-covari- no
ance mitrix of parameter estimates (from the at all theoretically (Haberman, 1974), and com-

Information matrix), correlations obtained from putation is straightforward. In our opinion,
them, and a variety of output options, the chief computational problem in contingency

2 " "



table analysis based on ML methods is diagnosing cells (1,1,1) and (2,2,2) are structural zeroes,
when sparse data (Type I or Type II) creates an or are to be fitted perfectly because they are
estimability or rank problem. As we shall see "outliers". Either of the above models can be
below, LOGLINEAR can be improved on, although examined recognizing the set S of structural
what it currently does is probably better than zeroes; this is done by specifying the zij of
what similar programs do. Diagnostic warnings the previous section. The CWEIGtlT command in
concerning such problems, at least intelligible LOGLINEAR ran be used to convey this information
ones, are virtually nonexistent, not just in LOG- to the program. If Z is the vector with entries
LINEAR but in all other procedures or programs z 0 for structural zeroes, I for others),
we have used. zJ

then specifying
3. Specifying Models in LOGLINEAR

CWEIGHT = Z/
To illustrate the flexibility of LOGLINEAR, con-
sider the case with three categorical varibles prior to the DESIGN statement will cause the
A, B, and C. Examples of models in each general program to analyze a quasi-log-linear model. The
case (I - IV) described above will be given, quasi-independence model (in three dimensions)
These examples can of course be done in a variety would be specified by
of ways; we only intend to convey the flavor of
modeling with LOGLINEAR here. DESIGN = A, B, C/, (3.3)

Case 1. Log-linear models for contingency tables, for example, and quasi-log-linear models analo-
The model of no 3-factor interaction (no "second- gous to those in (3.1) or (3.2) can be analyzed
order interaction") can be estimated by the as well. LOCLINEAR calculates parameter esti-

following two commands: mates for quasi-log-linear models, unlike some
programs based on the iterative-proportional-

LOGLINEAR A(1,3) B(l,3) C(1,3)/ (3.1) fitting algorithm, and if the pattern of blanked
DESIGN = A, B, C, A BY B, A BY C, B BY C/ out cells creates rank problems in the model

matrix, the program will recognize the diffi-
Each variable is assumed to be trichotomous. The culty and delete one or more parameters from the
first statement says that there is "one group" model. This should alert the user to potential
(J - 1) or equivalently that each variable is a problems in interpreting parameter values (con-
response. The model matrix is filled with two trasts of log-estimated counts). It essentially
columns for the main effects of A, by including solves the problems in calculating degrees of
"A' in the DESIGN statement. Four columns are freedom for chi-squared statistics when such
used for each interaction. The default coding problems arise. (The special problem of dealing
of variable contrasts leads to parameter esti- with separable subtables created by particular

mates that correspond to deviations from means, patterns of structural zeroes--see Goodman (1968)
A A --is solved without difficulty.)

In Goodman's (1970) notation, Xi and X will - s d o i u
2A 2

be estimated, for example, and X (which is not Case III. Multinomial-response (logit-type)
-^A -A models. Responses are distinguished from "fac-

estimated) is given by - 1 + 2). (An easy tors" or independent variables with the BY speci-

modification of the program would be to include fieation in the LOGLINEAR command. Suppose A is
as an option a feature that would calculate the the response variable and that B and C are fac-
redundant parameter estimates as well as their tors with joint BC levels fixed by sampling
standard erro s.) design or conditionally fixed by the researcher's

wish to examine only the "effects" of B and C on
Now suppose that the levels of all three var- A. Suppose first that we are only interested in
ables are equally spaced, and we wish to examine the first two levels of A; perhaps level 3 of A
the model that has linear-by-linear interaction represents a "don't know" response or censored
structure. The simplest way to do this is to use observations. The additive dichotomous logit
orthogonal polynomials to code each variable; model is specified by:
this is done by specifying CONTRAST(A) = POILY-
NOMIA., etc. Then the DESIGN statement is re- LOCLINEAR A(1,2) BY B(1,3) C(1,3)/
placed by DESIGN = A, A BY B, A BY C/ (3.4)

DESIGN = A, B, C, A(I) BY B(l), A(l) BY C(l), The "BY" fixes the n, j = 1, .... 9, where
B(1) BY C(1), (3.2) "

A(l) BY B(l) BY C(I)/ n1 , sample total with B = I and C = 1 ... ,9 =

The term "A(1)" denotes the linear orthogonal the sample total with B = 3 and C = 3. This .
contrast for A, for example. This model has command essentially determines the (w values in
linear-by-linear 2-factor interactions and linear- (2.1). A model with A trichotomous (perhaps now
by-linear-by-linear 3-factor interaction. It is including the observations censored in the pre-
related to models considered in Naberman (1974), vious model) is obtained by replacing "A (1,2)"
Goodman (1984), and Clogg (1982). with "A(I,3)".

Case II. Quasi-log-linear models. Suppose that
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Now suppose that level 3 of A represents a "don't
know" response. The researcher wants to examine
contrasts of A-i versus A-2 taking account of Maximum likelihood or other estimation methods
the censoring that takes place in the model of derived from frequentist theory can be difficult I.-
(3.4). A natural way to do this exploits the to apply to sparse data. Table I gives three
"special" contrast specification: simple examples of sparse data in 2x2x2 contin-

gency tables. These data can be studied either
CONTRAST(A) = SPECIAL (3*1, 1 -1 0, 1 1 -2)/ (3.5) in terms of logit models (C the response and A

and B the factors) or in terms cf the equivalent
The contrast (1, -1, 0) is of special interest, log-linear models. MLE's do not exist for the
and the contrast (1, 1, -2) can be used to exam- additive logit model (model of no 3-factor inter-
ine the difference between non-censored and cen- action) applied to Table Ia. MLE's do not exist
sored observations. Now suppose that we wish to for the saturated logit (or log-linear) model
examine linear effects of B and C as in (3.2). applied to Table Ic. For Table lb the theory is
The appropriate model will be estimated by the less clearcut; the zero counts for responses on
following commands: C when A=B=l amount to giving zero weight to

that response pattern in a logit model. Because
LOCLINEAR A(I,3) BY B(l,3) C(I.3)/ of this the main effects of A and B on the logits
DESIGN - A, A BY B(I), A BY C(1)/ (3.6) of C are not simultaneously estimable. We treat

all three cases with the corresponding models
Case IV. Poisson models. Now suppose that A, B, discussed above as nonexistence problems, how-
and C denote risk factors, and the frequencies ever, recognizing that nonexistence might not be
in the cross-classification of these risk factors the preferred term for Table lb.
denote event counts (e.g., deaths). Suppose
further that the cell-by-cell exposures (e.g., Clogg, Rubin, and Weidman (1985) use these three
person months) are collected in a vector W. The contingency tables to compare eight popular logit
command "CWEIGHT = W" adjusts the cell counts regression or log-linear analysis programs. The -'-
for the exposures. If each factor is quantita- LOGLINEAR procedure in SPSSx was one of the pro-
tive with equal spacing, a model of interest grams considered. The following discussion
could be: indicates that there are some problems with LOG-

LINEAR at least In the area of providing diag-
LOGLINEAR A(1,3) B(1,3) C(1,3)/ nostic information.
(:WEIGHT = W1
CONTRAST(A) - POLYNOMIAL/ For Table Ia and using the additive logit model
CONTRAST(B) = POLYNOMIAL/ (3.7) (model of no 3-factor interaction), LOGLINEAR
CONTRAST(C) - POLYNOMIAL/ prints chi-squared values of 0.00, 2 degrees of
DESIGN = A(I), B(1), C(I)/ freedom, and two zero fitted freque .cies corre-

sponding to the sampling zeroes. From Haberman
If m is the expected count in cell (s,t,u) and (1974a) these are the correct answers. This

model would have I df if no more than one sam-
is the corresponding exposure in the A x B pling zero occurs (or if all counts are positive),

x C table, the model estimated above is equiva- and most researchers would like to know why the
lent to: correct answer is df = 2. Neither the program

output nor the documentation provide any help on
iog(m /wstu log(rstu = + 1F s + F t + r3u, this matter. The two main effects are not simul-

taneously identifiable: the LOGLINEAR fixup
an adIditive log-rate model with linear effects deletes the B-C Interaction term (for B's effect
of each risk factor. It is very difficult to on C), but of course the A-C interaction term
estimate such a rate model using the IPF algo- could have been deleted with equal justification.
rithm advocated in Laird and Olivier (1981). But It is only because the B-C interaction infor-
as Laird and Olivier note' Poisson log-linear mation was stored in the "last" entry in the
models are closely related to the familiar pro- relevant arrays or matrices that this parameter
portional-hazards model, value was deleted. (Incidentally, LOCLINEAR

prints "." for both parameter values and stan-
Covariates. An attractive feature of LOGLINEAR dard errors for deleted parameter values.) The
is the covartate option. If X is a quantitative only diagnostic message given by the program is
covariate or dummy variable, it may be added to "ML did not converge," but this diagnostic is
the model by using a WITH specification. For misleading. The program did give the correct-- "
example, suppose we wish to examine the linear and exact--ML solution for the expected fre-
effect of X on the log-odds that A = I instead quencies, which in this case are merely the-.
of A = 2. A modification of the model given in observed frequencies. Researchers might con-
(3.4) might be as follows: clude that the A-C interaction was estimated

appropriately and that the B-C interaction is
I.OGI.INEAR A(I.2) BY 8(1,3) C(i,3) WITH X/ zero, but of course such an inference would be
DESIGN = A, A BY B, A BY C, A BY X/ (3. ) incorrect. The estimated value of the A-C inter-

action does not refer to the contrast of log-
4. Some Simple Diagnostic Tests frequencies that is used to define the original

... ...
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model. The point is that the user is left in cal models having observed marginals as sufficient b

the dark concerning what the program did, what statistics. HILOGLINEAR was evidently prepared
the results mean, and what could be done to to serve as an exploratory screening procedure FF.
remedy the problem, that could be used to select models for further

study in LOGLINEAR. At present, however, HILOG-
For Table Ic using the saturated model, the out- LINEAR appears to be quite preliminary and we
put is again somewhat misleading. The MLE's do cannot recommend it. The procedure does not
not exist for the saturated model when there are calculate parameter estimates for unsaturated
sampling zeroes, so some indication of this models; because of this, the procedure can never
would be expected. Here is what LOCLINEAR gives, stand alone even if the researcher is interested
The program gives the correct chi-squared value in the kinds of models that can be considered
(0.00) and the correct df (df - 0). But even with the procedure. The program does not calcu-
though the MLE's of the parameters do not exist, late degrees of freedom correctly for incomplete
LOCLINEAR print outs estimates for them along tables: the example in the SPSSx documentation

*with standard errors. The standard errors are (one of the classic examples--see Goodman (1968)
large and the parameter values are nonsensical, and Clogg (1985)) reports incorrect df because
so some researchers would recognize that there it does not recognize separable subtables. There
is a kind of identifiability problem. But no are both forward selection ond backward elimi-
warning messages or diagnostics are printed, nation model search options. A general recommen- -

dation is that HILOGLINEAR should be greatly
The additive logit model (model of no 3-factor improved and expanded; the P4F program in BMD
interaction) was applied to Table lb. LOGLINEAR provides a good example of what should be incor-
gives chi-squared values of 0.00, which is porated.
correct. But most ML advocates would say that
the model applied to Table lb is equivalent to We have the following recommendations for Im-
blanking out the two sampling zeroes because the proving LOGLINEAR, most of which can be imple-
ML solution will estimate these frequencies as mented easily:
zeroes. The model would be redefined and repa-
rameterized for the remaining six cells. When 1. Improve the documentation. How covariates
this is done, the additive logit model is may or may not be used is unclear from the
saturated relative to these six cells, so df = 0 published report. There are no examples
should be reported. Nevertheless, LOGLINEAR with continuous covariates. There are few
gives df = 1. It is curious that a chi-squared references to the literature. There is

value that has to be zero for such a sparse table little indication that the CWEIGHT command
would be said to have one degree of freedom. And can be used to adjust Poisson counts for
once the two sampling zeroes are removed, the exposures, no indication that the program
parameter values that would be calculated no provides a flexible procedure for analysis
longer refer to standard contrasts of the logits. of rates.
LOGLINEAR nonetheless prints parameter values 2. Output: multinomial-response models are
and standard errors with no warning that they do alternatives to discriminant analysis. Since
not refer to the contrasts originally specified multinomial-response models (logit-type
in formulating the model, models) are convincing alternatives to linear

discriminant analysis (Press and Wilson,
To summarize, LOGLINEAR does not do a good job 1978), it would be helpful if output from
in reporting results obtained from elementary such models could be arranged to facilitate
examples with nonexistent MLE's. Diagnostics practical discriminant analysis. This would
are virtually nonexistent. Users who suspect involve obtaining the predicted proportions
problems in their output (suspicious parameter in the I response levels for each of the J

values and/or standard errors, or unanticipated groups and assessing their variability (pre-
degrees of freedom) will have to turn to an diction intervals) under the model. This is
experienced consultant to answer their questions, easy to do. Output from programs dealing

To put this evaluation in proper perspective, exclusively with dichotomous logistic regres-
however, it should be noted that LOGLINEAR per- sion models (SAS: LOGIST or PREDICT, BMD:
formed at least as well as the seven other pro- PLR) already facilitates such analysis.
grams examined in Clogg, Rubin, and Weidman 3. Input-Output: linear contrasts of parameters
(1985). More internal checks for consistency and the associated varlance-covariance matrix.
and more intelligible diagnostic messages are If I is the vector of parameter estimates,
required in all of these programs. linear contrasts of the form L 6 can be used

to advantage. Such linear contrasts can be
5. Suggestions for Improvement tested using Wald statistics. Since the

variance of R is already calculated, this
Another procedure in SPSS

x 
can be used for creates no special problem. Various speci-

analysis of categorical data too: HILOGLINEAR, fications of L could be used to examine how
a program based on the IPF (Iterative-propor- a given model might be simplified (explora-

tional-fitttng) algorithm. The "HI" is not a tory use), to examine collapsibility of
salutation, but stands for hierarchical models; categories (Suman, 1985), and to perform %
this procedure can calculate ML fits for hierarchi- simultaneous tests on sets of parameters %

"-
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without resorting to the comparison of Table 1. Three 2x2x2 Contingency Tables with

nested models and likelihood-ratio tests. Sampling Zeroes
4. Output: variances of measures of associa-

tion. Haberman (1982) derived the approxi- La. _ lb. ic.
mate distributions for both entropy and
concentration measures of association. This C C C
information should be added to LOGLINEAR. AB 1 2 1 2 1 2

5. Input: adding fractional counts to the data. 11 0 3 0 0 0 3
It is easy to add the same constant to all 21 9 4 9 4 9 4
cell counts (e.g., ), and there is some 12 6 3 6 3 6 3
justification for doing so when saturated 22 5 0 5 3 4 1
models are considered (Goodman, 1970). n - 30 n - 30 n - 30
Adding constants to the frequencies can be
interpreted from a Bayesian perspective; the ____

prior is either beta or Dirichlet. Adding
the same constant to all counts shrinks the REFERENCES
data toward equiprobability. In a logit
model this shrinks all parameter values, [1 Clogg, C.C., Some models for the analysis
including the constant, toward zero. More of association in multiway cross-classifi-
flexible priors that are model based are cations having ordered categories, Journal
discussed in Clogg, Rubin, and Weidman of the American Statistical Association, 77,
(1985). Simple changes in LOGLINEAR would (1982) 803-815.
allow implementation of these. (The most
obvious choice in a logit model Is to add (2] Clogg, C.C., Quasi-independence, Encyclo-
constants to "successes" and "failures" in pedia of Statistical Science, Vol. 7 (forth-
proportion to the marginal distribution of coming) (1985).
the response.)

6. Programming: internal checks. As the [3] Clogg, C.C., Rubin, D.B. and Weidman, L.,
examples in the previous section show, there Simple Bayesian Methods for the Analysis of
are problems when even simple tables with Logistic Regression Models, unpublished
sparse data are analyzed. The program does manuscript (1985).
not seem to "correct" for zero observed
group totals in multinomial-response models, [41 Gale, W.A. and Pregibon, D., An expert
or at least does not do so all of the time. system for regression analysis, In Proceed-

For tables of high dimension there should ings of the 14th Symposium on the Interface
be additional checks on a cycle-to-cycle of Computer Science and Statistics, New York:
basis for estimability. We believe, but Springer--Verlag (1982) 110-117. •

cannot prove, that it is not sufficient in
general to let conclusions reached in one [5] G3odman, L.A., The analysis of cross-classi-
cycle about estimability dictate model re- fied data: independence, quasi-independence,
definition (parameter deletion) in all sub- and interactions on contingency tables with
Sequent cycles, or without missing entries, Journal of the

7. Diagnostics: warning messages, cautionary American Statistical Association, 63 (1968)
remarks. The only warning we have seen in 1091-1131.
using LOCLINEAR is "ML did not converge."
This is not informative enough. There arc [6] Goodman, L.A., The multivariate analysis of
many other messages that should be given, qualitative data: interactions among multi-
particularly when sparse data problems arise, pie classifications, Journal of the American
Some information about possible rank pro- Statistical Association, 65 (1970) 226-256.
blems in the Information matrix would be
helpful as well. (Perhaps such diagnostics [7] Goodman, L.A., The Analysis of Cross-Classi-
could be borrowed from those in wide use for fled Data Having Ordered Categories (Harvard

the X'X matrix in regression.) These pro- University Press, Cambridge, Mass. 1984)
blems are ignored in the technical documen-
tation. (8] Haberman, S., The analysis of residuals in

cross-classifled tables, Biometrics, 29
In spite of the criticisms noted above, LOG- (1973) 205-220.

LINEAR is a good program for the analysis of con-
tingency tables. In our opinion, researchers (9] Haberman, S., The Analysis of Frequency
who have access to both LOGLINEAR and BMD's pro- Data (University of Chicago Press, Chicago,
gram P4F will be able to deal with most contin- 1974a).
gency table problems that are likely to arise in
practice. [10] Haberman, S., Log-linear models for frequen-

cy tables with ordered classifications, " .',

Biometrics, 30 (1974b) 589-600. . .

' [IIll Haberman, S., Analysis of Qualitative Data:

.. . . . . . . . .
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[16] Press, S.J. and Wilson, S., Choosing between
logistic regression and discriminant analy-
sis, Journal of the American Statistical
Association, 73 (1978) 699-705.
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FITTING MULTINOMIAL REGRESSION MODELS TO CATEGORICAL DATA

Christopher Cox

Division of Biostatistics
and Division of Toxicology

in the Department of Radiation Biology and Biophysics
University of Rochester

Parametric models for the multinomial distribution are considered within the larger
family of regular exponential family models. This allows a unified approach to fitting
multinomial regression models using algorithms based on iteratively reweighted least
squares. A useful example is provided by the family of continuation ratio models.
Generalized linear models are considered as an important special case of the
exponential family which provides an approach to categorical data based on log-linear
models.

1. INTRODUCTION 2. MULTINOMIAL REGRESSION MODELS

We consider the theory and practice of maximum We consider a random n-dimensional vector Y
likelihood estimation for multinomial regression having a multinomial distribution as a member of
models. These are parametric models for data a regular exponential family. To this end we
obtained by measuring a categorical response in write the density of Y as -k'
the presence of possibly multiple explanatory
variables. The appropriate sampling scheme is
what is known as product multinomial sampling. p(yn) = pr(Y1 =Y 1 .... Yn=yn =
We discuss the exponential family formulation of
such models and review the fitting of general expEn yi -y.ln(e +In(y'-
exponential family models using iteratively i J y
reweighted least squares. The discussion is
based on the approach of Jennrich and Moore,
(1975) which deserves to be more widely where y. = Eyj and the multinomial probabilities
recognized. We include a slightly simpler can be computed from the natural parameters as
derivation of their results, which basically
consist of a formal identification of the
maximum likelihood problem with a weighted =i enl/eJ"
nonlinear least squares problem. This yields an 3
iteratively rewelghted Gauss-Newton algorithm We assume that the n-dimensional natural
for the computation of maximum likelihood
estimates and asymptotic standard errors. We parameters n depends on p- n parameters B and
illustrate the theory with an example using write E,(Y) = pi() and Vare(Y) = Z(B). For the
continuation ratio models for ordinal data multinomial distribution these are p() Y-(O)
(Fienberg, 1980.) We also discuss the
generalized linear models of Nelder and and E(e) = y.[D(n)-iu'l. Differentiating under
Wedderburn (1972) and the resulting fitting
algorithm, which is also based on iteratively
reweighted least squares. This subclass has the
advantage of being much more analogous to - 2
ordinary linear models and is the basis for the U = - ad/.n and E = -3 d/Dn
GLIM statistical computing system. Finally, we
consider the analysis of categorical data using T i h e o r e g
GLIM, which rests on the assumption of Poisson The likelihood equations for the regular
sampling. exponential family likelihood are

s(6) = n' y + ad' = 0
ae 0
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To transform these equations we first apply the which is an iteratively reweighted Gauss-Newton
chain rule to the previous expressions for the algorithm for the nonlinear least squares
mean and variance functions to obtain problem . Asymptotic standard errors, obtained

by inverting the.information matrix, may be
computed from the usual standard errors given by

"d' , the Gauss-Newton algorithm if we omit the

go - =-residual mean square

w ~~~~2 = (-)£(-)(-)

= _ _d = a= For the multinomial distribution the numerator
S

=
"is just the Pearson chi-square statistic for

goodness-of-fit. Recent work on quasi-

Now let Z- be a syrmetric generalized inverse likelihood models (McCullagh and Nelder, 1983)

of E, satisfying LIV-£= I. In the multinomial suggests that if 2 is not reasonably close to

case we have -= (y.)-D-I(v). Then since one, e.g., is significantly larger than one,

a'0 implies Var(a'(Y-u))O, we have ££-(Y-p)
=  

then the asymptotic standard errors should be

Y-u, (Y-p is in the range of E) with probability corrected by multyiplying by a.

one. Combining these results we may write the -
In practice one can fit general exponential

likelihood equations as family models using any weighted regression

program which can be iterated after

S 1 recomputation of the weights. This can be done
s5(6) - (Y ) _for example in MINITAB. Nonlinear regression 7-7

programs which impliment the Gauss-Newton
algorithm are easier to use provided they allow

= O -U) iterative computation of the weights. Such
programs are available in BMDP, SAS and GENSTAT.
To use such a program one must specify the

' '-) quantities , 311@ and E - (means, derivatives
and weights). We used the program BMDP3R

These are the normal equations for the nonlinear (Dixon et al., 1981) which alsoallows the use
of a loss function as a termination criterion.

least squares problem: minimize The natural loss function is the deviance,

(y-)'-(y-u). It also follows from these ,5%

results that G2 - 21 yilog(;l) - yilog(y1 /y.)l -

Et- where are the estimated probabilities. This

is the likelihood ratio statistic, with n-I-p

allowing us to write the information matrix as d.f., of the current to the saturated model

which estimates the multinomial probabilities by

l() = Var s(o) = I- k 2 T the observed proportions.ae aO a 6 ao

Therefore the Fisher scoring algorithm becomes 3. AN EXAMPLE: CONTINUATION RATIO MODELS

If the ordering of the categories I .. ,n is not
arbitrary (or even if it is), the n-I

tx(6)I conditional probabilities known as continuation
) [-(8) s(d) = (Z' I0 -0,)-

1 
-- I-(Y-j) ratios (Fienberg, 1980) are defined as .I2

pi Elli /EiTj
j>i j~i

.4-.

..... ..... ..... bL..'bibh
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Continuation ratio models are just logit models or more easily from the recursion

for these conditional probabilities. In the p11I
framework of product multinomial sampling we 7I 

= 
(I-p I ) _

have multinomial probabilities

1l1i R. 1!JSC), satisfying which can also be used for the computation of

for 1USiR, and continuation ratios Pjj. The derivatives. The program was run with initial

model is specified by writing the logits, ttj, values of 0.1 for all parameters and converged

as functions of the explanatory variables and in 8 iterations to a G
2 

of 18.6, which agrees

parameters 9. For example Fienberg (1980) with the value of 18.5 given by Fienberg (1980)

considers data on 3 levels of educational in Table 6-11. This example is also discussed

attainment. The explanatory variables are age in Cox (1985).

(2 levels), race (2 levels) and father's

education (4 levels). The data consist of There is of course no reason why one should have IL

counts of the three levels of the response different parameters for different continuation

variable for each combination of the three ratios, nor need the model for the logits be
linear. Consider, for example, the following

explanatory variables, for a total of 16 multiplicative interaction model for an RxC

trinomials (32 d.f.). Flenberg (1980) table under product multinomial sampling,

considers, among others, an 18 parameter model mY+.-

having different parameters for each of the two iJ = B I

continuation ratios. The model includes main

effects for each of the three factors, as well . R; .....-1,

as an interaction between father's education and

race. In an obvious notation the model is given subject to the identifiability constraints

by 
1 =O,  1=O, for a total of 2R+2C-4 parameters.

This model cannot be fitted as a series of logit

models for the continuation ratios. As an

c +c c c + illustration we consider a 4x4 table discussed

arfc a r Yf + ''rf by Cox and Chuang (1984). The data consist of

where c(=1,2) denotes continuation ratio and the ratings (poor, fair, good, very good to

appropriate constraints (e.g., a€I = 0) are excellent) of four analgesic drugs. The data

imposed for identifiability, are given in Figure 2. The y and 0 parameters

now model differences between drugs, while the B

As Fienberg (1980) points out, this model can be and e parameters model differences between

fitted as a separate pair of logit models for continuation ratios. Figures 1-2 display the

the two conditional probabilities. We fitted the FORTRAN and BMDP programs for fitting a model

entire model using the nonlinear regression with eight constraints, (6 d.f.) which
program BMOP3R. The means (probabilities), essentially identify the first two and the last

derivatives, weights and loss function are two drugs. Here again convergence was fairly

supplied to the program in a FORTRAN subroutine rapid (Figure 3) with initial values taken from
a previous, unconstrained fit. The deviance

(Figure 1). The multinomial probabilities ni may 
2 
previous,

be cmpued fr i2 (i1=1p 1) romthe elaion G =9.58 with 6 d.f., as well as parameter .A
be computed for i>2 (Trl=l-Pl) from the relation

estimates and asymptotic standard errors are

given in Figure 3. Observed and predicted
(1-pi) j =0P- J P proportions (Figure 4) can be extracted for.",

the computation of standardized residuals.

.b
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4. GENERALIZED LINEAR MODELS - A SPECIAL CASE The Fisher scoring algorithm can be rewritten as

This class of models is important because of its Ae = (X'WX)- x'W(z-)
useful similarities to ordinary linear models

4. and because it forms the basis of the GLIM
statistical system (Baker and Nelder, 1978). or since 8=XO, as

Two additional assumptions are required for a -.
generalized linear model. The first is that the -1
components of the random vector Y are e+Ae = (x'wx) - X '

Wz.
independent. This means that we can factor the
likelihood so that the function

Thus each iteration yields the next

d(n) Zd1 (ni), approximation, rather than the increment. Again

omitting the residual mean square the variances

and Ui= d/a i ,  of the least square estimates are also correct

Var(Y1 ) -a2 
dj/an 2 since XWX = (aij'/a9)E-( I/ae) 7

Because of the assumption of statistical
and Z is a nonsingular, diagonal matrix. The independence the natural error structure in GLIM

for categorical data is the Poisson
second assumption is that nl=f(1i1), where f is a distribution. The connection between Poisson
monotone link function and V is the linear and multinomial models is well known (McCullagh

and Nelder, 1983). An approach using the
predictor, 4#=X, where X is a matrix of multinomial distribution is possible by using

predictor variables. Thus on the appropriate composite link functions (Thompson and Baker, -%
1981) although this is much more involved and, J,

scale we are dealing with a linear regression we believe, more awkward than the method of

problem although not with the usual error fitting expected values discussed previously.
Examples of log-linear models with Poisson

structure. errors may be found in Nelder and Wedderburn . ' -

(1972) and McCullagh and Nelder (1983).

Nelder and Wedderburn (1972) develop an

iteratively reweighted least squares algorithm 5. ACKNOWLEDGEMENTS

for fitting generalized linear models by Debra Jacobson exercised considerable skill in ,

defining a working dependent variable preparing the manuscript. Work was supported by
NIEHS grant ES-O1248.

z al ='YP

and a diagonal matrix of weights

W = E a'.

With these definitions the likelihood equations

can be written as X'Wz = X'WX8, which are the

normal equations for the linear least squares

problem: minimize (z-Xe)'W(z-XB) .

-V % 
. . . .
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1.

Figure I FORTRAN program for the computation of means (probabilities),
derivatives and weights (variances) for a 14 parameter
continuation ratio model. The program is used with BMOM3.

SURUIEPRU4,D....AENAPAPSLS.DP

I PICTRALB(-H.Z
DIESO FNPR4(PR,(NA)DP2,PD(0.D(0

DIENIO DF(NPR) P()-X(),-X(VA),DC() .DP( 20().P(IC)

DO 30 I./(.N-PA X(-H)

DCP(2) - 0.0 . P)X3

IF(31 EQ. 4)- TO 35(4
(C : CDIN (X ~ )

DP 4 CP (IP'lI)X() x 5()PIPl)X3

DCP (1 5 CP .(I. - CP)'X(2)-i)X2
OCP(6) *CP'(l. - CP)'PI3) 1-X3
DCP(3) CP:(l1. - CP)'PI4) 1-X4
DCP(4) * C'(l. -CP)X(5
OCP(5)+.)P * CP. -i- CP(C) l)I2

DCP(ICP-tt) -CP*(t. - CP)'(P(S)-X(2) *P(S)-X13)

x P(7)'X(4) + P(S)'X(5))
35 IF(X() EQ. 4.)CP -0.0

IF(X(iJ EQ. 1.)PF - I.
I F(X(I) EQ. I.)PF - 0.5

F*t.-CP)PP/. M PP)*PF
DO 40 1-l.NPAR
DF(I) - -DCPII)-PP/(l. - PP)VPF
IF(X() EQ. i.)G0 TO 40
DF(I) - DF(l) - (I. -CP)/I. - PP)2POP(I)-PF
OFMI -FI (I. -CP)'PP/(i. -PP)*PDF(I)

4*0 CONT INUEDF
PF F
PP *CP

DO 50 I-l.NPAR
PDF(I) - DCP(I)
PDF(I) - DFWI

50 CONTINUE
* 1(9) X (7)/F

X1055 -2.X(G)DLOG(F/X(8))
RETURN
END

j
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Figure 2 BMDP3R program for fitting a 14 parameter continuation ratio .
model. Redundancy is avoided by the use of constraints. This
model has 8 constraints and 6 independent parameters.

I%

/PROBLEM TITLE IS 'CONT INUATION RATIO MODELS -AN ALGESIC DATA'
/INPUT VARIABLES ARE 7.%

CASES ARE IS.
FORMAT IS FREE.

/VARIABLE ADD IS 2.
NAMES ARE CPID.X1 .X2.X3.X4.I.JLM.DEN.RA7IO,CASEWT.

/TRANSFORM RATIO I OUM/DEN.
CASEWT 0..

/REGRESS DEPENDENT IS RATIO.
WEIGHT IS CASEWT.
PARAMETERS ARE ,A.
MEANSQUARE S 1.0.
LOSS. -

/PARAMETER NAMES ARE GAMMAI.GAMMA2.GAMMA3.GAMMA4.TNETA1.THETA2.
THETA3.THETA4.BETAI ,BETA2.BETA3. .
DELTAI .DELTA2 .DELTA3.

INITIALS ARE 1.63.1 63.1.O.1.O0..00,.00.-.00.-0.00,0.o-., ,.. ,.,. 0o.0:-
CONST 110)1 Ko.0
CONST " (9)1 K-O
CONST ( )12)1 K--
CONST - (13)1 K-.
CONST - (1)1 (2)-1 K-O.
CONST " (3)1 (4)-I 'O.0
CONST - (5)? (6)-I 1O,.
CONST * (7)1 (6,-I a O.

/END

1 0 0 0 5 3031000 10 30
2 1000 130

41 0 30 0 5 30

1 0 1 00 3 31
3 20100 331
30100 331

4 0 1 0 0 20 31
1 0 0 I 0 10 31
2 0 0 1 0 6 31
3 0 0 1 0 12 31
4 0 0 1 0 3 31
100 0 1 7 29
2 0 0 0 1 12 29
3 0 001 8 29
40001 229
/END

/FINISH

*-...... ........ .......



-. - - -. .. * £ - - .*~7 7-'- ~ . . 1 . .

wa

.4

4'~ . I' . 0000

0f.fro la 0 "no h m

* n 4 40 0 0
m*wo o 0) 0E ~ 000000000

-m ww

o6 o6 666 w4I4444 111111 -

4 i -000000060 0 0000000006

cu o

0 w0il
* O~sd-

-x u, 0 "N*** 9 tr-00oo

mmgUm 54 wamnN H.msI I I F 0000000 as c 5 0 ~mmsmss

S., z

0 o 0 .......W00 4
0510LS) 005Li 55. 0 *Y0ONC~ c ) 5

w, w ww,*w S1111 o-j 11111 N~ N cn v qoomo4
x- ~ 4 5 ' .Q .004.

-a o ---- 00606 o o00000000-0.-- r

-zz
-dz

S"" og !TgE"NN" 
SMa-. -

-SM 4 44;41121Mo5m44SSIMg

Iz *o * ; .. . . -

.............



rv4

xm

0i

o 0 0 00-0 0 0 0 0 0 0
--- 000000000000

30

* 4. . . . .. . . 8 . ."-

4)0j

E 00000000000

*01

04 00CL~0

8"-8-8o-goo-o
o~~C o. .. .66660o 6 ..P

0. . ... .... . .
1< 0000000000000000

*0 0

0 c

0- w 000 
",

a.) .o .

CE 0066666c;(5600660

cu 0

0-.0)

* ~~~I.- wdWP4 pP)0

0. U 0 000VW"8 .1000080~lPWO

cc 0 0fl .. ....2U p

(UL.0.0000 000 0000 0000 0

04 (A---M- 0 0
-o mm,,w-l Mrb "0

I. a w 0006000000000000

2~ A. I

" ;"- "

._ . .. 3_# '==' ¢_ _ - '-._ ¢ ' .- . .Z.'_.' - .- 0) "._wr- _.U ".-,- ..U.-0.-_.0 0 .:. . .. .=_ :. v,..- - _ -i _



J.~T. IL K7-J 7 171 - .7.. 7-7 ..

GRAPHICAL ANALYSIS OF PROPORTIONAL POISSON RATES

Brian S. Yandell

University of Wisconsin - Madison

We present graphical tools for examining proportionality of a Poisson process rate to a
baseline from a group of similar processes. We examine smooth deviations from this base-
line using smoothing splines for general linear nmodels. An example of egg-laving rates for
leafhoppecs is examined in sonme detail.

1. Introduction 2. 1. Log Likelihood I
This paper concernst inference for nonstationar5 Poisson The likelihood can be wsritten do~n and decomposed into

rate, which are "almost" proportional to a common baseline. It piece, so that. subh'iect to constraints, we can hase a separate
prosides a means for "pre-smocithing' rate estimates to avoid likelihood for each indisidual proportionalits term. The overall
some of the common problenm% of estimating functions with large log likelihood
cursature at certain places. Ilogli,)O(,)c t)

One mav beieve that a group of female potato leafhoppers i

in the same fluctuating temperature regime (Hlogg. 1984) would can be reexpressed as the sum of
cripposit at rate% which rose and tell at rottghl% the same time.
T hat is. one would suppose that the cisiposition rates would be LfO") I. [logo', 1rc)-0"Q] (3
pi o('ortional to a comnion baseline rate One (ould estitmate this i ] (
baseline rate, and then estimate the ndidual c:urses fix simpl] and
determining the constant ci) propoiionaliti. a, msas done b%
lfartoxynxkt et a). 11981). lossexer. oue might siant to examine -'I )-o' (i11 12.4)
the piopiortionalit as a function of time to determine sihether or

Vi e ptovipoxe a miethord to ext state th is pi olsirionalm itmori I hitlfho toi t pple *- ' d.~5 indcae oxr mi thle i ntr ncle
time Mthough mans approaches are possible ((lexenxon and Ide' ,ote that (2 1) is a l'ixoi lptialiied likelihood, and
iZidek. 1977i Hlti and 1 ibxhiani. 1

9
8

4
t. sic dci elop our rxi- 41 i 1 J ttltitiiial peni;i/ed likelihood coniditiontal on I*-

niattir% li the Irartemior oif 1,etalited maiamumn likeli hood (Good in otlieti old-. . is hintotital 0 .,(i,t i ). I his suggests
and ( axki c. 1971: 0 Su lixan. liandell , and Raynor .Jr.. %phlitt (f2 41 ito l, et lit, of the for lit
19841

Settort 2 fotitularx the probhlemi of ptotxitonal rates 1 0i. ")lo
Penarlitect claxniuni likelihood extiniattr, tot the baxeline rate
atid propx'rtioitalit\ ret nis are deseloped lit Section 3 SCtlion 4 iii xr iti, Pi iI I 1 1Iti the log likelihood can be
hitefl presentx drag nost IClookx The methods are applied ito) pi t, e i'.ttHaidli t,.iI. .r.s h
lealhoppet ox ipoxitton data in Secton 5 the iexr, itt, lion \ I ha I

2. Proportional Poisson Rates 3. Piaid Miaxinmum Likelihood Estimates
An indi\ idual leafhopper i. i .1, r, max lm )i,~ eggs We no-s inipioxe a penalty on the esiiniors to insure a cer-at time * i I< < t,. T he count ),, is assumed Poisson with tait, %micolthne.x ni guaranteed h% the likelihood as written. The -

mean hil,). which max be nonstationar). We focus on the penali~ed maximum likelihood estimate IMPLE) for the baseline
model rate (lHarttrsi~iski ci al . 1981: O'Sullivan. Yandell. and

Rasiritr. )r . 19i84t call be found b\ minimiizing, for fixed X,

1t.10, X = L0,
t 

I 5(0") (0.1)
Proportional rates would correspond to constant a,. with ho(.) inwchJ)sanproiteealfuto.tycly
being the baseline rate. Taking logarithms yields i AihJ sa prpit eat ucin yial

lolht) lgf 0 ())x ogo~t). (2.1) 31-ff f 
1
(inlt

1 1 1 1  
di (3.2)

or.repramterzin on ha sith mn = I or 2 liii penalrs on the slope or curv-attire. reSpec-
tixeli. A large value of the penalus, or smoothing, parameter X

0,ft)) = ol() * cm,(il. i 0. i= 1. re (2.2) forces A' to be nearis linear, %bhile a small X allows A0' to inter- -

The degree to sihich the u, or a, -ate not constant correspond, polate the data
to hoss much the proportional rates assuniption is %iolated. This I he sxtifit splinex incorporate a prior belief that the
suggexts that one could exaluate the degree of nonproportionaltx true citric is smooth in a certain serse. The smoothing parame-
bs% extimating a,, or equixalentl~ a,. and plotting these against ter, X aie chosen bN niean, of Feneraliued cross validlation

tie.((raxes atnd i ahba. 19791. xthich tries tla mintire the mean

.5%

.. . .. . .. . .. . . .. . .. . .. . .
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squat e eiliot. for( iig a tradeoff betm cceI bias and x atrance. (Luhai., l'994: (u,tis and Lulstish. 19133 naiurall' extend diap

Sinmilar esriiessions can be mritsen dloun for determining rttc o nc~l~e rtlns eetnr fCxt94
the MI. of u, for each i. offers stronr apprttxNtaIM11Otof the penabzed feast squares estnia-

1T in the i - ci case, uinder certainS coiditon' otit the design .

LI(,I, A,) Lfto, ) + A, J(o, I(3.3) point, and stictottiig, p~tarnict . ahicli lead to sttitilanet'itn

Whe ,. Iaucx -. te cnstntNIP~s reconfidence handi, it one tg liii C' ias Viothter diiecrion based
When ' I att s theconstat ?s4P~s areott a a IPT Iei tu pertft'1 tot tfie repeg o how0t itition t hKnafl.

n, log(,)-, AI', . . *. Sac ks. atid N I% isaket . 11t831l)t Nyields bias -cor rected si tt uftascous
conifidence band,: fhete. bias is accitiunted for fb\ a bias correc- Ile.

1 he estinmation probfemt can be spfit into r~ f minintization prob- ti.
lenms. for f' and for a, . I= I *r. pros ided me are willing to lin

ignore the reltriction that :E;/r = 1. Of course. such a cestric- We adapt Waftba f1083h) iio the ton-i.i.d. case and argue

lion could be imposed, but it would place awkward constraints on in anr adrfoblm I faf ottthat tfi moelta esnbe oete
the smoting penaflties. ftot 1 rilitWertsdrteiite

3.1.~~~~~~~~ I~t 1C ueItr til 'v diagonal. I lie posterior estinmatot of g is
lie daitacott idered in Sec:titsn 5 is g rotiped bN 2 or 3 da\

I ntler, a I \k ih this design Imibalatnce. the estiates of ft'r and of E (C I ) X~ -- iX (41
0Iva\ fhe biased. depcitding on the pantern of grotupitng. lon - IThe covariance is derived in an analogous fashioti as

Vt ri ti iwtuit, nfitiotiai espet tji of the estiiti' i' unbiased
0 tIlt' iho, te 1'mirm of ittgioaoi I, itdrpeiiteti of the itae COI1(g I X) = ff4 U5 )s/tA)(4.2)

ofi M1sh idtiti %ke sax aditit't th 'etilizci ltikelihoiod e~pre, This suggests an approximate 95%~ confidence internal for g,
sioti sIn ;I natural nsak to ac couintt for the r educed data. name]\.

L lt I a- ).Ioi.u,-0',h (3.4) su1se.or I96 r1) 'ill A)(43
Now sups.frfined i, sse let X 1=log(Y./0', 1 - Y,j)) and

1. I fo approximate the coariance to first order.

- Isn tuft1 c, t ; ,, t , I fi.1 at is. lot each i. there The estinnated confidence interval for a, tI.) becomes
* n~~ete , distinct timtes i, at a tic Iit(ourits ), m.uere tiade "Ihese ,,(I.6 tA lep- 5 t)' 4.4)

count, enconmpass d,, dans each, and the proportion of dans for
*out (If the total coutit ) is d,,d., 1 hese technical'adjust This approach has sonic probletms. as the solution to the penal-

ments mere used for conmputing, but are not pursued further in ized log likelihood is not the same as the solution to a logit
this paM.regression m ith normal errors. We siill pursue this in later work

using ideas of Leotiard 1 19821.

We propose sit ad-hoc test of the h~pothesis of constant
3.2. Surninal and Osiposilion proporttrtnalit\ b\ conmputing the difference in deviances between

Throughout the leafhopper stud%, tndivtduals died+ Thus testohadctsatetmts
group size declined over time. These deaths can affect the esti- 00 .X) - 21Lm W - L ((A,, )., r (. * 4.5)
mate of the "baseline" rate ht", as well as the proportionalt
terms 0" iren if all the eates are constant. This problemt isnmost smith 6,01 being the 'tltnv estiniate of oft Ilot fixed snmoothing

*profound for small groups, such as in the latter portion of the parameter h and 6, the estiniate for constant in,. In other
leafhopper experimtent. a ords. D It.X1 is sinipl' the dleniatw e beta cci the consiat and

A siupl soutin sownin he ataana~st seitot i tothe smoothed logit titodein \\ e suippoise that this statistic man
A smpl souton hom i th daa nalsissetio istohave appvominatex a cti-st~tae distiibittioti aith degrees of free-

* h~~~~~~actoir out a step function front the baselitie rate. aith stefts at dmI ) tuf-1 5 I ewl opr hswt h sa
* ~~~~times of death. 1This can be easil\ acconmplished with partialliehodrtotasic l=Lu,) ihitI eges f
*splines lShiau. 1985: Wahba. 1983a). Appropriate niodifica-lklho ai ttsiP;-Lo)mi I]dgeso

titn, can then be nmade to (2A4t based on the estittaef step sizes, freedont. in the data analssis, sectioni.

A serious danger arises in oserparametetizing the niodel "itft Expressioni (4.51 suiggests esaiiitp fthe det ance cotitri
ssteps for each indisidual. buiotns at t ;reeti. I 084, l'reg btt. 19OS I

4. Diagnostics for Poisson Rates - , (,,t1 j 4.61

Wie prutputs an ad hoc "confidence internal" and lig likeli U1a1 tilt e sigit thte samte a' [fiat of )" - espitifW I ("M I Iof
hood residuals for graphical inspection of proputrttoiialt. At giteti I~ . t1'', 1ti, ittt \ol 0m, ' 'Luig, tiosiite ci
present we has e no concrete results, but support these tools b\ ItrF;Itt~ ti '1 ic y,:ei'ti fsa de. tat titi liost esci. the
analog\ to other work. Fraplticut te't' ai 0iti eli fii Mir hltl cot cled. arid a 3

Seteral diagnostic% hate been proposed for penalted man- gruthtikaI tuuitt I i t it" logt residuals canttot he tiemed as a
intum likelihocod in the linear (least squarest ttttde t mith ii.d glotla lte't
errors. Wabba f1983b1 proposed poinrwise confidence intersvafs
based on a Bayesian model with nornmal errors. Carmod\. 5. Data Atualnisis
E ubank, and "Ihonibs 1994 I proposed jackkhnife cotnfidenice \\C e s i10tnt' iti.'lt a lkibiiratit es petolCI itiett . Iti ited

internals unhuh peirnred poitli in conmparisoun tot the internalt bs flor icif I i, it it It1 fematle fittati lrettliopt'et s nici kept it.
- ~~~of 's' ;. (141, ta Ott Sher dtarni'siis baseif out rentuft coutttlteI lioluit', ut'ttilitn, at otti of thtte Ilttuatitig left)i



perature regimies. Nke locus here 01nl% on, the cold regimle. We Clevenson. M. I.. , and Zidek, J. V. (1977), 'Baze Loinear IEsti-evamine the baseline for tlte 23 females inl this group) along vsith matoirs of the Intensits Function of the Nonatrar Pis-the proportional term for tIo of these fernales. A more complete son Process." Journial of fh li Aieivi; .Siallsilal .43., iu-
analysis is in progress jointth milli Daiid Hlogg. fntomology rion, 72, 112-120.

lected.Cox, D. D. 119841 "Gaussian Approxinmation of Smoothing

for 1-3 da% intervals. Also, individuals mere removed front tlte Wisconsin.
4 stud% b% death. eitter natural or accidental (due to handling).

4We assunme that the grouping does not introduce any bias in the Craven. P., atid Wahba, G. I 1979). "Smoothing Nois% Data
estimation of the baseline rate, and that we are interested in the wihSpline F unctiotns: Estimating the Correct Degree of

%baseline rate and proportionalityv terms at any time only for those Sotig b lrMto fGnrlzd Cos*lealboppers which were alive. We initially proceed as if survival Validation,' Nw,iir Math- 31 77-403,
* did not affect bias, and later correct for survival as indicated in

Section 3.3. Eiubank. R. L. (1984), "The flat Match\ for Smoothing
Figure 5.1 shos the baseline rate and the rates for indivi- Splines," 5yaisi. A Iliobab Leiic",. 2, 9-4,

duals 22 and 23. Note the rise to a fairl\ constant rate, with gra-
dualdec~. he aysproprtinalt~ or ndivduas 2 an 23 Good, 1. 1,, and Gaskins, R. A. 11971), "Non-Parametric

are plotted alongside curve estimates ysith penalties for tlope and Ro8h. s Peatisfr5rbai
2 De2ti77.~netiaI ~ ~~~for curvature in Figures 5.2-3. The curve estinmate based on a 5,2527penalty for non-zero slope appear mtuch rougher than the curves Green, P. J. (1994t. 'Iteraivel\ Revs ighted Least Squares for* ~~~~~based on cur' atttre penalty. Approximate 95% pointmise confi- MvnusLklho siain n orRbs ndence intervals for the proportionalit\ estimates, based on the Resitan Ailtinat,'. uit ision ), JSm Rotv aiid

curvature penaltN, are shown in Figures 5.4-5. l,4,1912
The likelihood ratio statistics with degrees of freedom and

p-value are shown itt Table .5.. Note the great reduction in Gunst, H. 1'.. and Eubank., R. 1. tl9RI) "Regiessioti Diagno"-1
degrees of freedom for the penalized curves, while the deviances. ti( and Alio\itnir lnitrremue l'tvvcrduie fo IY1i l'es.il0vstav fairlv high. Figure 5.6-7 shoys the logit dleviances over Least Sclume' .ivar le~lnicvtl leportu I I, D~ept

time.of Statisutic. So. Methodist 1'..
Table 5.1 Snmooth De\ iances

Hastie. 1. .. -and I1ibslittai, K. J. (104, 'Generalized Addi-
Deviance d.f. logIM) tive Models." Techntcal Report 98. Di\. of Biostiutistics,

ff22: Stanford 1'..
constant 188.21 68.
m = I (slope) 1 17.66 14.88 .6 Hlogg, 1). KI (1041t "l'otawv Leailltolier (Iloriioptera Ctcadelli-
n) 2 icurvattiret 99.40 8.83 -12 dart Ininiattie lDselpnen. Litr- 1 ables, and P'oputlatiotn

D , naniuvS Under Iltctu~ttinF 1 nitperaiure Regimes.
#23: I11M"a Lnvinwiiii ....i~ivv 0o . t submitted)
constanit lI 3.99 64.

m=I (slope I 63.5bs 5.87 .4 Knafl, G., Sacls. J_, and 'ulsisaket. I). ?1983a) "Uiniform Con-
n) = 2 tcu,vaurri 62.3t, 3.35 -8 fidence Intervals for Regression Estimates.* 'technical

Report, Center for Statistics and Probabilit), Northwestern\ N C tDinde 1611 thuric rmtiitaie for the baselins' otnceu.
otic .idvu -i for the so isis itl Pt ocr'". fI gure 5.8 shiovs s he naive
atid aditisted baseltne rate estimiates for the cold regime. One Knafl, G., Sacks, I., anid Ylvisaker, . 1). 983b) "Model RobttstSetv that survival has little effect on the haseliiie rate for iu,i of Confidence Intervals If." Technical Repor5, Center forthe esperiment, though estimtates at the late, times cati he Statisttcs and Probabilit\, Northwestern U..-
affected.
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C-LAB, AN INTERACTIVE SYSTEM for CLUSTER ANALYSIS

,.B. SHAPIRO and C.D. KNOTT

Division of Computer Research and Technology, NIH, Bethesda, MD 20205

The C-LAB system, for doing cluster analysis and related work, is described. It
differs from other cluster analysis systems in that (1) it is interactive, (2) it has

its own built-in language in which user algorithms can be programmed, (3) it contains
many built-in functions for matrix manipulation, numerical analysis and statistics,

and (4) it is display oriented, having commands for producing publication quality

clustering dfagrams.

1. INTRODUCTION Most C-LAB operators work on a data matrix,

where each row represents a data point (also

called a sample or an object) in n dimensions.
The columns are called variables (or features or

C-LAB is an on-line Clustering LABoratory attributes). Data to be clustered must have

facility that runs on DECSYSTEM-1O and -20 similar scales of values; C-LAB has two
computers. It consists of a collection of operators for scaling.
subroutines which implement many of the most

commonly used techniques in cluster analysis, There are many measures of similarity (or
plus some miscellaneous related methods. C-LAB dissimilarity) between pairs of

is a subset of operators in the MLAB (Modeling objects, the most common being the euclidean
LABoratory) system (Knott 1979), wl h has its distance. C-LAB has an L

p 
distance metric built

own high-level language for writing programs, in as a dissimilarity operator. Other
C-LAB differs from other cluster analysis dissimilarity measures are usually easy to
packages in three main ways: (1) it is program.

interactive, (2) it has a built-in language (the

MIAB language), and (4) it is display oriented. The basic idea of cluster analysis is to
MLAB provides matrix manipulation and display partition a set of n-dimensional points

facilities and has many built-in functions representing measurements or descriptive values
useful in statistics and numerical analysis, of an object (e.g. measurements of different

C-LAB is run on display terminals and since it parts of a plant, or symptoms of a disease) into
is interactive, results and drawings are seen as groups called clusters. The number of and

they are computed. MLAB has its own commands nature of the clusters may or may not be
for drawing pictures, and these are supplemented specified, and the clusters are to be " -

by C-LAB operators for preparing the output of discovered. Also of interest are the properties
cluster analysis algorithms for drawing. A user of the points which determine to which cluster

"an program his own algorithms not available in they belong.

C-LAB. As pointed out by Anderherg (1973) most

cluster analysis methods are relatively easy to The usual paradigm for cluster analysis is to

program. Such special algorithms can be define a similarity measure or metric, d(x,y),whchpodcsogumriaamaurmf o
programmed as subroutines (called ltO files in which produces a numerical measure of how
MIAB) and invoked to process specific data. similar the two points x and y are. The choice

of such a metric can be crucial and is, of
course, left to the user. Once the metric is

chosen clusters can be defined in various ways,
2. THE C-LAB OPERATORS based on grouping similar points together.

The main part of C-LAB consists of the operators

for doing clustering. There are operators for

There are many aspects to cluster analysis, each of the three broad categories of clustering

including the choice of data units, variables, algorithms: hierarchical clustering, %
clustering criteria, and of what to cluster, the non-hierarchical clustering, and approaches
method of homogenizing variables, the using graph theory. The hierarchical clustering -P
computation of similarity measures and operators are those for computing and drawing

clustering algorithms, and, finally, the dendrograr,;. Clusters are determined by

presentation and interpretation of the results, visually examining the drawing; there is no

These aspects are dealt with by C-LAB as algorithm In C-LAB for selecting clusters from
described in the following. dendrograms. Non-hierarchichal clustering is

. . .. . .I .. . I I



done in C-LAB using a variant of the K-means clusters. This approach is based on the work of
algorithm: objects are put into separate Zahn (1971). MST, ALINKAGE, CLINKAGE, CENTROID,

clusters, using a minimum variance optimizing and WARD are the operators for computing

criterion, and information about each cluster is dendrograms based on single linkage, average
then printed out, rather than drawn as It is for linkage, complete linkage, centroid linkage, and
dendrograms. A graph theory approach to Ward's method. KNEANS is one of the many
clustering is implemented in C-LAB through the variants of the K-means algorithm, this one
minimal spanning tree operator and related taken from Hartigan (1975).
operators for "breaking" certain "inconsistent"
tree edges. Clusters are then defined as the The CLUSTERERROR operator computes the cluster
resulting subtrees. error from a given clustering solution, such as

computed by the K-means operator. COPHEN is
Graphical output is a specialty of MLAB and used to compote the correlation between the
there are a number of C-LAB operators used for dissimilarity matrix for a data set and a
displaying results as drawings. In addition to dendrogram computed for the data. (There are
the standard MLAB facilities for drawing graphs operators in MLAB for computing correlation and
there are C-LAB operators which compute matrices covariance matrices.) DISTANCES is an algorithm
from which dendrograms, minimal spanning trees, for computing linkowski's distance metric, and
and Chernoff faces (Chernoff 1973) can he drawn, is used for creating a dissimilarity matrix.
There are two operators for reducing the The euclidean distance metric Is most commonly
dimensionality in a set of data and they can be used.
used to obtain a plot of the data in 2
dimensions, and in 3 dimensions also, since The output operators compute matrices that
there are commands for drawing pictures in 3D. contain a summary of information about clusters

(CLUSTERINFO), or matrices used to draw
The C-LAB operators are organized into six dendrograms (DENCURVE), Cherooff faces
categories: scaling, feature reduction, cluster (FACESCURVE), or minimal spanning trees
analysis, output, triangulation, and (TREECURVE). Examples of the use of DENCURVE
miscellaneous. At present the following and TREECURVE are given below.
operators are available:

In addition to the operators directly related to
Scaling Feature reduction cluster analysis there are four used for the
AUTOSCALE FISHERRANK triangulation of a set of points in the plane.
RANGESCALE PRCOMP The triangulation is done by the DELAUN operator

NLM (for Delaunay triangulation, defined below), the
Cluster analysis triangulation drawing by DELCURVE, the computing
MST Output and drawing of nearest neighbor (Voronof or
INCONSISTENT CLUSTERINFO Dirichlet) regions by VORCIIRVE, and statistics
TREECIUSTERS DENCURVE related to the Voronni regions are computed by
AI.[NKAGE FACESCURVE VORSTAT. The triangulations algorithms are from
CLINKACE TREECURVE Lee and Schachter (1980) and Shapiro (1981).
CENTROID
WARD Triangulation
KNEANS DFLAUN 3. THE MLAB LANGUAGE

DELCURVE
Miscellaneous VORCURVE
CLIStERERROR VORSTAT ' e

COPHEN The MLAB language is extensive. Only a brief

DISTANCES introduction to the statements and operators
that would likely be used by C-LAB users is

Auto-scaling and range-scaling are used for given here, however there are also operators for

scaling the variables of a data matrix by matrix manipulation, curve fitting, differential

normalizing them or by putting them in a 0-I equation solving, and integration of functions,

range. The FISIIERRANK operator is the standard plus commands for input and output, including
Fisher discriminant ratio, and is used for drawing pictures.
ranking the variables of a data set according to
their ability to discriminate between known Assignment statements are similar to those I

categories for the data. PRCOMP and NLM perform other computationally-oriented languages, having

principal components and non-linear mapping the form

algorithm, and are used for reducing the "=x
dimensionality of a set of data. The non-linear variable-name = expression
mapping algorithm Is from Chang and Lee (1973).

where the variable is a scalar or matrix
For the cluster analysis operators, mST, depending on whether the expression is a scalar
INCONSISTENT, and TREECLIISTERS are used for or matrix one. MLAR is a higher level language
compuiting a minimal spanning tree, then for than FORTRAN or BASIC, and no declaration of
finding "Inconsistent" edges in that tree, variables is needed. Expressions have the same
"breaking" them and determining the resulting form as in other high level languages, for

Li2i
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example a root of a quadratic equation would be U - F ON 2:q U is a column vector of

expressed as (F(2),F(3),...,F(9)).
V = POINTS(F,A:B) A:B in column 1,

(-B+SQRT(B-2-4*A*C))/ (2*A) (F(4),...,F(B)) in
column 2.

Scalars and matrices are created and manipulated
through assignment statements and through the
use of built-in and user-defined functions, which specifies a matrix of coordinates to be

Operators for matrices include the following: drawn In a window. The window specifies the
position of an imaginary box around the data on

A & B Concatenate matrix B below A. the display screen, e.g.

A V B Concatenate matrix B to the W , 0
right of A. WINDOW W, 10 BY 20, AT 0,0

A * B Ordinary matrix multiplication. is
A * B Multiply corresponding elements, indicates that window W is 10 data units by 20
At indicates the transpose, data units, with the lower left of the screen

having coordinates 0,0. Thus the point (5,10)

Some of the commonly used built-in functions are would be plotted in the middle of the screen.
The STRING statement is used to display
characters, as In the following:

A:B:C The values A,A+C,A,A+2C, STRING "ABC" IN W, AT 5,10 ABC Is drawn
...,B. if C is omitted i at

then C-I is assumed. starg
NROWS(X) The number of rows in 5,10.

matrix X.
NCOLS(X) The number of columns in The DRAW statement has a number of options.

matrix X Some of those that are used with C-LAB are

7 READ(DATA,M,N) Input data from file illustrated in the following, where Z is a 2

DATA into an MxN matrix, column matrix of (x,y) coordinates and W is a
window as described above. .. 7

SORT(X,C) Sort matrix X, using w w d i a
column C as the key. DRAW Z IN W, LINE I The points are connected

SUM(I,A,B,E) The sum of expression E by a solid line.
for index I running from DRAW Z IN W, LINE 0, LABEL WITH I:NROWS(Z)
A to B. Usually E The points in Z are labeled
contains index I. with consecutive integers

CURR(X) The correlation matrix and the points are not
for matrix X. connected (LINE 0).

LiST(EI,2...,En) A one-column matrx withW,
wihDRAW Z NLINE 6 Line type 6 specifies

n elements. E,E2,...,En lifting the pen between

are expressions. curve segments.
CROSS(I:M,I:N) An MxN matrix containing

(1,1) (1,2) ... (11,N).

Specific rows and/or columns of matrices can be 4. EXAMPLES
referenced, as in

X([,.J) The 1,J th element of
matrix X. Five examples are given here to illustrate the '

YROW 1:5 Rows I to 5 of Y.
(":" indicates through.) type of programming and picture drawing

associated with C-LAB. As can be seen, quite a

Z ROW A:B COL C:D Columns C to 0 of rows bit is accomplished in a few statements. F7J
A to B of Z.

The essential ingredients in most MLAB programs 4.1 Jaccard's Coefficient
are the function statements. Functions are
defined as in the following:

For presence-absence data, association
FCT F(X)-A*X-2+B*X+C A quadratic coefficients are ,sed for similarity measures.

function. Jaccard's coefficient is illustrated here. For

FCT G(T)-A*EXP(-B*HI(T)) H is a previously two m-vectors X and Y containing 0 and I values,
defined function. J is computed as a/(a+b+c), where

FUNCTION MAX(A,B)=IF A<B THEN B ELSE A
Max of A and B. a-the number of places where both X and Y are I

b-the number of places where X-1 and Y=O

Functions are computed using the ON and POINTS c-the number of places where X-O and Y-1.
operators, as in

."*%.".-..



FCT A(X,Y)-SUM(I,,M,X(II AND Y[11) The distances shown at the left of the
FCT B(X,Y)-SUM(I,I,M,X[[1 AND NOT Y[[n) dendrogram are drawn separately. They range
FCT C(X,Y)-SUM(I,I,M,NOT X[I] AND Y1i)) from 0 to the maximum value found in (column 3 j.

X-READ(DATAI,M); Y-READ(DATA2,M) of) matrix A. 900 is used here. The X
AA-A(X,Y) .,compute a"* coordinate for thee numbers In the window is
J - AAf(AA+B(X,Y)+C(X,Y)) .02, and the Y coordinates go from .05 to .95.

The numbers are drawn as follows:

L = .02 &' (.05:.95:.3)
4.2 Finding Nearest Neighbors DRAW L IN W,LINE 0,LABEL WITH 900:300:-300

The euclidean distances (squared) of point 0)
(nxl) to each of the points in mxu matrix X are 2 10 5 8 3 4 9 1 11 14 13 17 12 15 It20 16 18
computed and sorted and put into matrix ix,02 o SS37431I 43725S061
which also contains the corresponding indices in
column 2. Thus, after the code below is
executed, the index of the point closest to Q is
in IXi1,21 and the distance of it to Q is in
IX[1'11.

FUNCTION DIST(I)-SUM(J,1,N,(X[I,.I-QiJ])-2) .%
D DIST ON 1:M
IX - SORT(D V" 1:M,1)

4.3 Drawing a Dendrogram

In this example an average linkage dendrogram is
drawn. First the steps are explained, theu the
C-LAB statements for executing the steps are
given. (The other linkages would be done 900
similarly, changing only step 4.) The dendrogram
is shown in Figure 1.

Figure 1: Average linkage dendrogram for 20x5
data

(I) Create a lxi window in which the
dendrogram is to be drawn.

(2) Input the mxn data into matrix X, in this 4.4 Drawing a Minimal Spanning Tree on a

case 20x5. Non-linear Map

(3) Compute a dissimilarity matrix U for the
data. The NLN (non-linear mapping) operator is used to

1. project the points in some higher dimension to 2
% (4) Compute (m-l)x3 matrix A defining the dimensions, preserving the interpoint distance

dendrogram. relationships as much as possible. There is
inevitably some distortion, and one way of

(5) Use A to create matrix Q with coordinates assessing it is to superimpose a minimal
(in columns I and 2)and labels (in spanning tree, with edge length labels, on the
column 3) for drawing the dendrogram. non-linear map, since the edges in the tree

represent nearest neighbors connections. This
(6) Draw the dendrogram, using columns I type of combination was suggested by Kruskal

and 2 of Q to draw the lines (1977). It is easily done in C-LAB, as is
and column 3 for the labels at the top. described in the following steps. The C-LAB

statements are shown at the end. Figure 2 shows
a tight cluster containing points I to 10 and a

WINOW, BY , AT0,0 loose cluster of points It to 20, and indicatesWXDO - , READ(DA , AT 0,

D - DISTANCS(X) that the non-linear map represents the data

A = ALINKAGE(D) well.

Q - DENCURVE(A) (1) The algorithm starts with the mapped
DRAW Q COL 1:2 IN W, LINE 6, points in the 0-1 range, then on each

LABEL WITH Q CoL 3 iteration the points can move out of that

range. Therefore a window is set up

%.
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(5) Draw the Voronoi diagram. Line type 6 overcome by the fact that the C-LAB user can in
is used to lift the pen between segments many cases program his own special algorithms.

of the diagram. Thus, whereas C-LAB has only one operator
(DISTANCES) for computing dissimilarity values,

(6) Label the points. it is usually easy to program others, as
illustrated above for the Jaccard coefficient.

WINDOW W, I BY 1, AT 0,0 This language feature can be considered a plus,
X - READ(DATA,16,2) but it also means that a beginner would have

= DELAUN(X) more trouble than with say CLUSTAN, which has 38
V = VORCURVE(X,D) different similarity measures available.
DRAW V IN W, LINE 6
DRAW X IN W,LINE O,LABEL WITH 1:16 Being interactive, C-LAB is designed to be used

differently than other cluster analysis systems.
Rather than the user having to know beforehand
the exact series of computations to be done, .

succeeding steps are based on current results.
The value of this feature depends on the

4 •12 particular work being done.

The usefulness of the graphical capabilities of
the C-LAB language can be attested by the fact
that most of the techniques found in Everitt

7 15 (1978) for displaying multivariate data are
either already available as C-LAB operators or
are easily programmed. The former include the
operators PRCOMP (principal components 
analysis), NLM (non-linear mapping), MST,

15-14 
CLINKAGE, ALINKAGE, 

CENTROID, and 
WARD

- 2 0(hierarchical clustering), and FACESCURVE
(Chernoff faces). The latter include
probability plots (Gerson 1975), Andrews plots
(1972), and biplots (Gabriel 1971).•13.'-

Copies of the system documentation and the
MLAB/C-LAB program are available by writing the
authors.
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SCATTERPLOT MATRIX TECHNIQUES FOR LARGE N

D. B. Carr, R. J. Littlefield, and W. L. Nicholson

Pacific Northwest Laboratory
Richland, WA 99352

Ilgh-performance interaction with scatterplot matrices is a powerful approach to
exploratory multivariate data analysis. For a small number of data points, real-time
interaction is possible and overplotting is usually not a major problem. However,
when the number of plotted points is large, display techniques that deal with
overplotting and slow production are important. This paper addresses these two
problems in the context of display devices that have a color look-up table. Topics
include compromised brushing, film loops, and density representation by gray-scale
or by symbol area. The paper also discusses techniques that are generally
applicable, including interactive graphical subset selection from any collection of
scatterplots, and comparison of scatterplot matrices.

1. INTRODUCTION variations, the important themes prevail. The
two themes are 1) scatterplot matrices provide

A scatterplot matrix for p variate data is the an effective approach to exploratory
ordered display of p*(p-I) scatterplots as multivariate data analysis and 2) scatterplot
shown below in Exhibit 1. Since 1980, many matrices can be enhanced to provide more
descriptions of scatterplot matrices have information. Undoubtedly, scatterplot matrices
appeared in statistical graphics literature.[, and a variety of enhancement procedures,
2,3,4,5,6]. With different names and modest including transformations, smoothings, missing

Acid Deposition For 9 Sites

,s ":. :Site Loc.

, Longitude

Date

• ~~Year' ---

-pH Sulfate Nitrate -Depth

Exhibit 1: Scatterplot collection. Data in the scatterplot matrix are multiple measurements on
individual rain samples collected at nine sites in the ADS (Acid Deposition System) network.t7"
Nitrate and Sulfate measurements are ion concentrations expressed in logarithms of micro-moles per
liter. Depth is rain gage depth in logarithms of millimeters. Two additional plots show site
location in degrees and collection dates in decimal year. With 4109 points (minus some missing
data) the overplotting is substantial.
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data representation, and interactive subset large concerns overplotting.
selection and representation will find their
way into an increasing number of statistical Large data sets are common. Many monitoring
packages and into common use. The purpose of studies generate large quantities of data. In
this paper, which is a sequal to [51, is to a substantial subclass of such studies, the
elaborate on interaction, density representa- same measurements on variables are obtained at
tion and display techniques that are helpful in different times and/or at different spatial
representing a large number of points, and to locations. Large data sets then arise from
exploit the color look-up table on color raster pooling data across temporal and spatial
display devices. indicies. Exhibit I shows data from 9 sites in

just one of several acid rain deposition
An objective of "new" graphical techniques is monitoring networks. Other monitoring examples
to make the discovery of significant patterns include seismic networks, multispectral , _
in data easier and more likely. Once a satellite images, and so on. .-

pattern is found, analyst ingenuity can
typically produce an alternative display that From visual appearances, Exhibit I might more
shows the same pattern and meets with appropriately be called a scatterplot collect-
publication regulations. Thus, readers of ion. That is, Exhibit 1 illustrates plots in
publications often have little exposure to addition to a scatterplot matrix. The indexing
techniques that are particularly effective in parameters of site location and time are shown
the interactive exploratory setting. Until in separate plots. An addition would be an
electronic journals become available, the gap underlayed map in the site locations plot.
between what is useful in exploratory data Whatever the layout, there are two key
analysis and what can be portrayed in static concepts: (1) the background data structure is
monochrome journals will remain. In this an I x P matrix of data; and (2) interactive
paper, the importance of the scatterplot graphical subset selection can be driven from
matrix and graphical interaction is assumed, any plot.
Little space is devoted to description and
interpretation of data to prove that patterns 3. INTERACTIVE GRAPHICAL SUBSET SELECTION AND
were found that could not have been found any REPRESENTATION
other way. Thus, what is shown here does not
convey the speed or power of the scatterplot One of the most powerful enhancement procedures
matrix for finding significant patterns, for scatterplot matrices is to distinguish

subsets of data for comparison against each
2. LARGE N other or against the whole set. Interactive

graphical subset selection is particularly
What is large depends on the frame of convenient. Four approaches to graphical
reference. If available plotting space for a subset selection have been described in the .
scatterplot is a one inch square, 500 points literature. The first [10] involves picking a
can seem large. For our purposes, N is large point in a plot, and having the subset include . -

if plotting time is much greater than real the k nearest neighbors. The second approach
time, if straight forward plots can have an defines the subset by specifying a rectangular
extensive amount of overplotting, or if region which contains the subset. The third
computation times are long. Exhibit 1 approach [5,11] involves drawing a polygon
provides an example. If there were no missing around desired points. The fourth approach
data, each scatterplot would contain 4109 [6], called "brushing", uses an interactively
points. With fourteen plots, the total number specified rectangular region that can be swept
of points in the display exceeds 50000. through the plot to define arbitrarily shaped
Currently, few if any display devices can regions. Points falling in the region are in
display this number of points in real time (in the subset.
a fraction of a second). Thus, with commonly
available display software/hardware, 50000 is Omitting the nearest neighbor approach which
large. The exhibit also fits the other is largely algorithmic, brushing is the most
definitions of large. Substantial overplotting convenient form of subset selection and
can be inferred from plotted area, the dot size encompasses the other approaches. Brushing is
and the number of points, 4109. Computation particularly advantageous when selected points
times are also long for some operations. For are distinguished in real time. However when
instance obtaining graphically specified the number of points gets large, significant
subsets from 4109 points does not take a lot of time is required to find and redisplay all
time, but obtaining lower, middle, and upper points falling within the sweep of the brush
smooths (8], say using LOWES [9], does. Thus, and the display lags behind the brush. With
the data set for Exhibit 1 qualifies as large polygon selection, defining lines can be drawn
under all three counts. Because display speed in real time. For finding points, computations
and computing capabilities can be expected to are reduced since a simple boundary is
improve draatically, the key definition of involved, as opposed to a long sequence of

rectangles generated by brushing. For storage -.

..... .... .... ..... .... .... ....
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purposes the polygon definition is more displays provide more alternatives.
compact than a long sequence of rectangles or
a vector indicating which points were chosen. Color raster display devices with a color
In addition, polygon definition can be readily look-up table allow the definition of multiple.-,-
niodified when applied to revised data bases, plotting surfaces with control over their
Consequently, for large data sets, polygon priority (color overplotting/mixing control)
selection is the method of greater practical- and visibility. To rapidly display a chosen
ity. subset, the selected subset can be written in a -

higher priority (color overwrite) surface.
Color is generally accepted as a good method This is also a compromise. A better display
for distinguishing a small number of subsets. would also distinguish regions by a third
When display speed is a problem, as in color when selected points overplot points in
brushing, approaches can be taken that lead to the complement set. This three-color plot
compromised but rapidly produced displays. The unfortunately requires replotting all data.
underlying trick is to redisplay only selected One approach is to work initially with the
points and leave remaining points alone. In a fast display. The color mixture version can be
monochrome setting, two types of dots can be written in hidden surfaces as a background
used as shown in the top row of Exhibit 2.[6] process. When the color mixture version is

complete, it can then be substituted for the.
approximate version. Erasure or removal of a
small chosen subset can also be handled by
plotting with the background color in a higher
priority surface. Unfortunately, when
overplotting between the chosen set and it's
complement is substantial, such plots become
unacceptable. The only recourse seems to bem m direct plotting of the complement set. Thus,
even color devices do not solve all the speed
ttlenecks of brushing.

For study and comparison purposes the
simultaneous representation of more than one
set becomes desirable. Figures 3a and 3b show
an example. After noting the similarity of the
X1 versus X6 and X1 versus X7 plots in Exhibit
3a, a pencil shaped region was selected in each
of the two plots. The two selected sets are
shown by using open circles and filled squares
in Exhibit 3b. Disjoint sets and apparent

Exhlbit 2: "Exclusive Or" Dots. The top row symmetry in the X6 versus X7 plot came as a
shows two dot types, filled and open. The surprise. The example suggests that the subset
second row shows two disjoint filled dots. selection tool should be in the hands of those
The third row shows partially overplotted who understand the particle physics experiment.
filled dots. The invisible fourth row Then symetry would probably be taken as given
corresponds to any even number of identically and more subtle patterns would be of interest.
positioned dots of the same state.

Color can be used to handle more types of
overplotting. Suppose two sets A and B have

Filled dots represent points in the selected been graphically specified as in Exhibit 3b.
set and open dots represent points in the Depending on the specification, the inter-
complewment set. Writing on the bits in the section, denoted A-B, may not be null. This
central portion of each dot using the creates 4 sets of points, A.-B, B-A, A-B and
"exclusive or" operator causes the dot to "A., and potentially 11 types (6 pairs, 4
switch its filled/open state. The speed is triples and I quadruple) of overplotting.
obtained at a price. Consider the two filled Since eleven colors Is too many colors to
dots in each of rows two, three and four in distinguish rapidly, we chose colors in
Exhibit 2. The second row is fine. In the Exhibit 4 to represent subsets and -
third row dots are partially overwritten, so overplotting.
what is visible has a different shape. The -
invisible fourth row shows the blank created by The separation of the two sets is then shown as
perfect overwriting of any two or any even the absence of yellow. In contrast to Exhibit
number of dots of' the same state. The 3b, the relationship of two sets to the rest of
"exclusive or" approach is not desirable for the data is conveyed in a single picture.
large N problems since the approach requires
large dots with visible interiors and
misrepresents overplotted points. Color



Subset Colors

A. -B Green -
B-A Red
A. B Blue

i A-B Yellow

A--B with ~A-"B Cyan(roughly) -,
-MM&B-A with -A--B Magenta(roughly)

everything else Yellow

Exhibit 4: Colors for Subsets and Overplotting

When brushing is impractical and several sub-
sets are to be compared, another approach is
available. Each subset can be written in a
different plotting surface. Then surfaces are
cycled by changing the color look-up table.
This film loop approacih is described in more
detail in [13,14]. In general, sequences of
views are easier to follow if there is
continuity between views. In the subset
context, putting a composite view between each

Exhibit 3a: Particle physics data scatterplot of the subset views facilitates comparison.
matrix. The four variables (out of seven) -.
partially describe individual replications of a
high energy particle physics scattering 4. DENSITY REPRESENTATIONS
experiment.[I2] Units have been altered by
taking logarithms of absolute values. Note the Section 4 discussed overplotting for different
similarity of the two right most plots in the subsets. M o distinction was made if a
top row. displayed point came from one data point or

10000 data points. This section addresses
overplotting of multiple points from the same

~, ~ set.

Xj !fly The three basic strategies in dealing with
overplotting are 1) to plot open circular
symbols 2) to alter the data to reduce

- overplotting and 3) to represent the point
density. Plotting open circular symbols

M . [8] and jittering the data [3] are helpful
___ techniques for small data sets, but are

inadequate for large N plots. To represent
a large number of points, some form of density
representation is required.

In representing bivariate densities a common
approach is to bin the data and to indicate the

I ' P bin counts. For printer plots symbols such as
17{ those in Exhibit 5 are often used with

rectangular binning regions that correspond to
______space allocated for line printer characters.

Exhibit 3b: Two subsets. Pencil shaped sets Counts Symbol
were selected in each of the two right most
plots in the top row. Open circles and filled 0 blank
squares show the two sets. The two sets have 1 *
no elements in common and the X6 versus X7 plot 2-9 2-9 V
shows symmetry. >9 +

Exhibit 5: Plotter Symbols Representing Counts
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Since the amount of ink used is only remotely
related to the density, a "simple" visual
process cannot be .used in assessing and IF
comparing local densities. When the goal is
visual assessment of local density, two
approaches are available: either symbol
intensity represents the count, or symbol arear
represents the count.

4.1 Interactive Gray Scale Density
Representations

Using gray-scale intensity to show counts is a
common practice in the field of image process-
ing [15,16], which offers the opportunity for ,. "
real time exploration based on data density. c t
The process starts by binning data (see Exhibit
6a) into say a 256 X 256 matrix. Then the Iowa. 1 ""t

density estimate is often smoothed using fast O W .
algorithms such as the shifted histogram [16, = " .;
17,18] or the Fast Fourier Transform (FFT). I ME K•~~ IN I';(U(, '

Iext, the image is written into display device low,, I-LI
memory. This involves assigning elements of
the matrix to specific pixels and the trans-
formation of the estimated density to discrete Exhibit 6b. A Gray-Scale Density Representa-
pixel values. The correspondence from pixel tion. The transfer function at the bottom
values (density) to oray scale can be defines the correspondence between density and
manipulated in real time via the color look-up the gray level for each pixel. The transfer
table. Exhibit 6b shows an image corresponding function can be interactively manipulated to
to a different transfer function between the call attention to different density regions.
pixel values (horizontal axis) and the grey
scale (vertical axis). The menu at right
provides options for altering the transfer
function and for contouring based on
interactively chosen density levels. A fast
way to find the density levels is to create a
spike transfer function (Exhibit 6c) that can
be moved left and right with a mouse. The
corresponding rough contours are shown in real
'"rtime.

Man

2 Will afem"

+ :- : . . " .-: :...

"' Exhibit 6c. "Fmpirical" Contours. Movement of 'i
".. . a spike transfer function allows real-time,. -

, ... .:". ',investigation of different "empirical" , .
. contours.

- M In our implementation, the density estimation

x1 and interactive transfer function manipulation '
- ," routines were added as functions to S, a'

."Exhibit 6a: Binned Particle Physics Data. The statistical package fromt AT&T Bell taborator-

.... .:c,

data is described In Exhibit 3a. lere, the ies.i19] Chosen contour levels are easilyfirst two variables have been binned into a 256 passed on to a contouring routine in S. Other
X 256 matrix, variations of the transfer function can be used
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to call attention to high- or low-density environment, if one really wants to know the
regions. Gray scale density images can also be exact count, the best procedure is graphical
examined rapidly for scatterplot collections. selection of the desired area and a query to

the computer, "how many?". Exhibit 7d differs
When the above process is applied to large N from other area representations in that points
problems, little changes except that binning are shown exactly when 3 or fewer points fall
takes longer and density estimates often have in a region. A more difficult variant is to
a few extreme values. When the range of pixel plot each hexagon symbol as close as possible
values is limited to say 256, a linear mapping to the center of mass within each hexagonal bin
fran the density estimates results in low
gray-scale resolution for low density regions.
S can be used to provide square root or other
transformation before the density is trans-
ferred to display device memory. A useful
approach in density representation is to treat
densities above (or below) a specified value . .).

the same. We call this "blunting", and provide ,~2

Thus gray-scale methods are well suited for 0+

handling large sample sizes.

4.2 DENSITY REPRESENTATION BY SYMBOL AREA.

The use of area is another choice for direct
* visual representation of the local density.

Area is not perceived as accurately as several a
other visual variables [20] but in this context

*area provides a reasonable choice. The
technique of representing density with area can
be found in various guises in the literature.
One variant [3,8] is shown in Exhibit 7a. In Lsten Sodium
this variant, the binning region is a square
and the symbol is a sunflower. The number of Exhibit 7a: Sunflowers in square bins. Data
petals of the sunflower indicates the number of are paired sodium and chloride Ion

a single point which are represented with a micro-moles per liter from individual rain

dot, and except for overplotting of line samples collected at Acid Deposition Site 152A
segments, the amount of ink used (plotting -- Indian River, Delaware. (7] Note the visual
area) by the symbol is proportional to the impact in horizontal and vertical directions.
counts. When such a plot is compared to
Exhibit 7b which uses hexagonal binis or to_________________
original data in Exhibit 7c, point locations ini the sunflower plot with square bins appears .

stretched out in the vertical and horizontal
directions. The hexagon bins seem to represent
the data more faithfully. Bin shape is a type2
of two dimensional smoothing parameter. The24.
density estimate bias reduction for using.I
hexagons instead of squares is approximately 40*
percent.1121] This would not account for thei large visual discrepancy in Exhibits 7a and 7b.
The exact placement of the binning lattices can
make a difference. However, the discrepancy.*
most likely results from emphasis of human-
preferred visual directions, horizonal and

* vertical , by square bins and round symbols 0
* within the bins. For this reasu'i, we prefer
* hexagon bins. The additional cost for hexagonjbinning is small as can be seen by the

algorithm in the appendix. Given that hexagon lt Sdu
bins are co be used, the next question concerns totnSdu
the symbol . We prefer a filled hexagon whose
area is proportional to the count, as shown in Exhibit 7b: Sunflowers in hexagon bins. The
Exhibit 7d. This provides a general impression binning lattice still detracts, but the plot
of density. Some may complain that the exact looks closer to that in Exhibit 7c.

*count has been lost. In an interactive

4..
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important aspect is that regions of high
density are now evident. When hexagons are FI
written into display device memory, pixel rrw,.
values can be assigned that correspond to count
intervals. The color look-up table can be used

-00s to alter the displayed intensity in real time,
o2do just as in the gray-scale discussion.o oAlternatively, a few easily distinguished

S 0V 0 0 0 colors can be used to call out selected density
0 o ointervals.[15) When the number of points is

0 1) large density scaling becomes an issue. The
maximum hexagonal area displayed corresponds too0(). 4- the largest count and just fills its bin. With

70 othis fixed point and the area being

0 0 00 0 proportional to the count, low density symbols
become smaller than device resolution. In such

o cases a single pixel can be shown as in Exhibit
8. As in Section 4.2, this identical treatment

0 for a range of densities is called blunting.
0 iThe blunting of high densities is also useful

Loiten Sodium as are other transformations that emphasize
selected portions of densities, for example low
count regions. For binned data, transforming

Exhibit 7c: Original data. Actual overplotting counts and redisplaying them is a rapid
is not substantial. operation. Other procedures such as smoothing

can be adapted to binned data with great
computational savings and little loss of
accuracy.

4.3 COMPARISON OF SCATTERPLOT MATRICES USINIG

0 0 HEXAGON SYMBOLS

0 Two scatterplot matrices can be compared by
"OIe o '  

juxtaposition. Lower left and upper right
0 triangles can contain two distinct but commonly
oe scaled subsets.E22] Variable order is reversed

U . * O  for one data set so that no mental rotation
about forty-five degree lines is required for

0 Ole * comparison. However, it is still desirable to
o • 0.0 *place corresponding plots closer together. The0 hexagon representation above allows this to be

0 done by overplotting. Suppose two data sets
are to be compared. Hexagon lattice points for
the two data sets can be made identical by

a selecting a common scale and using the same bin
Logton Sodium size. If one data set is considered the

reference data set, counts of the other can be
scaled so that the total counts are the same

Exhibit 7d: Hexagon symbols in hexagon bins. for the two sets. Then the two displays can be
The hexagon symbol area is portional to the overplotted, one set in red, one in green and
count in each hexagonal bin. For bins with overlap in grey. This maintains the scatter-
three or fewer counts, individual points are plot matrix context and makes scanning for
represented by single-count-sized hexagons, differences easy. Other displays can be
and are plotted at data coordinates. Thus, considered such as direct display of functions
modest overplotting is tolerated, of non-zero and non-infinite count ratios.

4.4 LOOSE ENDS
while keeping the symbol completely inside the 7
bin. Since even the hexagon lattice structure A thorough treatment of density representations
can be distracting, approaches that break it up should include results concerning smoothing ,
are worth considering. Exhibit 8 shows a hexa- parameters for density estimation, human
gun density representation of the original data perception of density representations, and
plotted in Exhibit 1. Note that the number of should balance these in view of plot production
symbols actually plotted is much less than that speed and device resolution. In this
in the original. Thus, this display can be presentation only a few pointers to the
produced on a pen plotter. Of course the most literature are given. Scott [23] provides

. .
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Exhibit 8: Hexagon Area Density Representation. The area of each hexagon is proportional to the
count. The largest hexagon fills hexagonal binning regions. Small counts are represented by
degenerate hexagons. Below a certain count, all counts are represented by a single square pixel.
This is an example of blunting. Regions of high density can be readily identified.

results concerning the choice of smoothing opportunities. However, sampling can hide
parameters for bivariate densities and is a aspects of fine structure that do not
portal to the general literature. In terms of necessarily get hidden by binining. An
gray-scale perception, numerous references are advantage of large N is that patterns begin to - -

available.115,16] In assessing the response to emerge in low-density regions of data. It is
circle sizes, some studies show that humans precisely these low-density patterns that are
respond to area raised to the 0.7 power, but destroyed by sampling. Another argument
when the comparison areas are in view, there is against sampling is that obtaining represent-
little reason to use other than a linear ative samples when pooling over temporal and
correspondence between the variable represented spatial strata can require substantial work.
and the area of the circle.[24] Presumably Thus, both small M sample plots and large N
this applies to hexagons also. With small plots have merits.
hexagons, more is involved than the comparison
of two areas. As dots approach 70 per inch 5. SUfARY
as when viewed from 12 inches away it becomes
possible to respond to gray level even though The display of a large number of points in a
individual dots are visible.[25] Our hexagon scatterplot matrix has been a problem. The
centers are further apart than this, but in problem manifests itself in terms of hidden
regions where displayed hexagons are separated point density, long computation times for
by roughly 0.01 inches (our raster display selected enhancement operations, and slow
device resolution), some gray-scale impression displays. The difficulties are ameliorated by
is induced. Higher resolution devices such as computing and displaying densities. One
laser printers provide opportunity to density representation codes density as
capitalize on the human impression of gray gray-scale. With real-time graphical
scale as conveyed through area symbols, manipulation of a color look-up table,

attention can be focused on different density
With the focus on large N, the question arises, regions and real-time "empirical" contours can .-"'
"Why not sample?" The answer is that there are be obtained. A second density representation
trade-offs. Certainly sampling reduces display codes density as the size of hexagon symbols . -.

problems and provides cross validation as shown within hexagonal binning regions.

Z. ... . "-. .



Both approaches are useful in the context of C Compute Two Candidate Lattice Points
scatterplot matrices and scatterplot
collections where density exploration, subset J=X+.5
selection and subset representation are of I=Y+.5 -.;.
interest. The representation of a million or J2=X
wore points in each plot is feasible. 12=Y ,..Z -

For subset selection in the large N context, C Select the Nearest ,
real-time brushing is not feasible and polygon
selection is the method of choice. Since IF( (X-J)**2 + 3.*(Y-I)**2 .LT.
display times are less than real time, the * (X-J-.5)**2 + 3.*(Y-I-.5)**2) THEN
color look-up table can be used to store LAT1(I,J)=LATI(I,J)+l
different subset displays for real-time review ELSE
or to display subsets simultaneously, with LAT2(12,J2)=LAT2(12,J2)+l
careful control of color mixing. Thus, the ENDIF
color look-up table is a useful tool in the
context of large N. ENDDO

6. ACKNOWLEDGEMENTS C The Lattice points in original data I-
C coordinates for non-zero counts in LATI
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7. APPENDIX - ALGORITUM SKETCH FOR HEXAGONAL C LAT2(I,J)
BINNING C Y=C2*(I+.5)+YMIN, X=C3*(J+.5)+XMIN
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STATUS OF TIM NBS GUIDE TO AVAILABLE NATHENTICAL SOFTWARE

Sally E. Howe

National Bureau of Standards

The Guide to Available Mathematical Software (GAMS) is a classification scheme, a data
base system, and a printed catalog. CAMS provides a framework for both the end-user
scientist and the software maintainer to handle large quantities of mathematical and
statIstical software.

The extensive problem-oriented CAMS classification scheme provides a structure for
organizing software for general purpose mathematical and statistical computations. The
software currently cataloged In CAMS consists of approximately 2400 programs,
subprograms, and Interactive systems in some two dozen libraries. These libraries are
available on a variety of computers. Data about the software and about library
availability are stored In a relational data base and are maintained using a variety of
software tools. Users access the data via an on-line query system based on the
classification scheme. The printed CAMS catalog organizes Information about the
software according to the classification scheme and in several other useful ways.

I . INTRODUCTION

A vast body of reliable and well-designed Standards. Information about how NBS solved
computer software for solving many standard these problems may prove useful to other
mathematical and statistical problems now scientific computing centers. Other papers
exists. This software Is a crucial resource for describing earlier versions of this work have
scientific computing through saving time and focused on statistical software (Howe, 1982,
money, expanding the scope of problems which can 1983). The focus of this paper is not so much
be routinely solved by applied scientists, and the supported software but rather how that
insuring that the most up-to-date and reliable software support Is provided.
numerical algorithms are used.

This paper begins with a brief description of
Collections of mathematical and statistical the computing environmeat at NBS, primarily
software are now avallab.le In many scientific because our environment has Influenced many of
computing centers. These collections are often our decisions. The features of mathematical and
large and diverse, and thereby create several statistical software from a malatainer's point
software management problems, Including of view are then described, followed by
acquisition, maintenance, and documentation, descriptions of the CAMS classification scheme

for mathematical and statistical software, and

The NBS solution to these problems Is the result both the printed and the on-line Guide to
of the Guide to Available Mathematical Software Available Mathematical Software catalogs. The
(CAMS) project. CAMS is joint work with Ronald paper concludes with an overview of our

F. Bolsvert and David K. Kahaner and consists of Implementations.

several components. We first acquired an
extensive collection of generally available
mathematical and statistical software. We 2. THE SCIENTIFIC COMPUTING ENVILROIMENT AT NBS
developed a problem-orlented tree-structured
detailed classification scheme to Identify the The National Bureau of Standards (NBS) Is a
problems the software solved. The organization multi-disciplinary scientific research
of the software on the computer facilitates its laboratory with a staff of 3000. Its mission
efficient installation and maintenance. The leads to theoretical and expertmental research
software documentation takes the form of an in the physical and engineering sciences for the
inter-library reference. The on-line and the purpose of providing the measurement foundation
off-line documentation have consistent needed by U.S. science and Industry. W -A
structure. Finally, a single data base was
developed to Integrate the maintenance anid Computers at NiIS Include a recently acquired
documentation functions. Cyber 180/855 and Cyber 205, and minlcompters, I

microcomputers, and workstations numbering in"

The purpose of this paper Is to describe In the hundreds. Many of these computers and
detail the software management problems and the terminals are lIterconnected via NBSNET, an %.
solutions developed at the National Bureau of Etheruet-like local area network.

.. .. . .. . .. . ..
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The Center for Applied Mathematics is Recently, software with non-proprietary and
responsible for providing software for use on proprietary components has appeared. The non-
NBS computers, and for informing the user proprietary component commonly performs the
community of both the availability of such mathematical calculations, while the proprietary,
software and the Information necessary to use software Is a graphics software library.
the software. Our efforts to date have focused
on acquiring, maintaining, and documenting Sources for software documented in CAMS include
general-purpose mathematical and statistical distribution services, journals, and books.
software which Is useful In the scientific Statistical software is announced or published
disciplines represented at NBS. This focus in periodicals such as The American
restricts our attention to approximately ten Statistician, journals such as Communications in
thousand items, comprising perhaps ten percent Statistics, proceedings from conferences such as
of the total available scientific software, the Symposium on the Interface and the Joint .

Approximately seven staff years have been Statistical Meetings, and books (e.g., Francis
devoted to bringing the project to its current (1981)). Software may also be available from
state in which approximately 2400 user-invokable Individual authors. ,

software Items are managed.
3.2 Software Organization

* 3. A SOFTWARE BASS
Over the past several years we have collected

3.1 Software Acquisition software from numerous sources and organized it
according to a two-level system. At the higher

Widely available general-purpose scientific level are libraries and at the lower level are
software commonly takes the form of either modules which are collected into libraries. A
Fortran subprograms or Fortran programs, the module is the smallest user-callable problem-
latter often with tailor-made input languages. solving unit, and may be anL Individual user-

An early development in statistical computing callable subprogram, an Individual batch or
was batch-oriented Fortran programs which did interactive program, or a command In a large
not require users to be Fortran programmers, interactive program.
Current versions of these programs have
sophisticated languages specifically targeted to Software from a given vendor usually Is a large

statistical data analysis. The more recently collection of subprograms or programs, or a
developed interactive programs have similarly large interactive program, and is kept in a
capable and sophisticated Input languages, library of Its own. One special library is the

NBS Core Mathematical Library (CMLIB), a library

The foundation for the development of special- which is partitioned into approximately 50
purpose batch and Interactive programs has sublibraries of Fortran subprograms obtained
always been Fortran subprograms, because from numerous sources. While CMLIB Is
subprograms are the single most Important source partitioned in order to maintain the Individual
of Implementations of state-of-the-art sublibrarles, from the user's polnt of view it
computational algorithms. The software provided Is one very large library of portable, non-
at a research laboratory such as NBS therefore proprietary software.
necessarily is an extensive collection of both
Fortran subprograms and programs to support the The CAMS project currently manages approximately
needs of its users. 2400 modules In 20 libraries:

The software we have acquired is either BNDP ....... 40 statistical programs
proprietary, non-proprietary, or a mixture of CMLIB...678 mathematical and statistical
the two. Leasing of proprietary software subprograms
libraries, with their extensive capabilities and DATAPAC..,169 statistical subprograms
ease of installation, provides a firm foundation ISML ...... 471 mathematical aud statistical
for mathematical and statistical computing. subprograms

INVAR ....... 2 Interactive regression programs
Non-proprietary software is usually produced in LINDO ....... I linear programiing program

university or goverament laboratories as a MATHWARE ... 35 mathematical and statistical
product of research In numerical or statistical subprograms
methods. This software consists of some MATLAB ...... Interactive linear algebra program
narrowly-focused subprogram collections such as MINITAB... 150 commands In an Interactive
LINPACK (Dongarra, et al., 1979) and a plethora statistics program
of single-purpose programs or subprograms from NAG.....487 mathematical and statistical
many authors. There are no restrictions on subprograms
installing such software, which makes It PDELIB ...... 3 partial differential equations
particularly desirable In a multi-machine subprograms
environment. Substantial effort may be PLOD ........ I interactive ordinary differential
required, however, to install and test the equations program
software on a particular machine and to provide PORT ...... 270 mathematical and statistical
even the most basic support, subprograms

. , *. ,



ROSEPACK....I interactive robust regression L. Statistics and Probability
program H. Simulation and Stochastic Modelling

SIMSCRIPT... I simulation language N. Data Handling -
SLDGL ...... 31 ordinary differential equations 0. Symbolic Computation

subprograms P. Computational Geometry
SPECTRLAN...I Interactive spectral analysis Q. Graphics .

program R. Service Routines
STARPAC .... 16 nonlinear regression subprograms S. Software Development Tools
STATLIB .... 56 statistical subprograms
XMPLIB......2 mathematical programming sub- These classes generally proceed from fundamental

programs to more advanced topics. Most of these classes
are further subdivided, and In these

For each user-callable (or executable) module we subdivisions core subjects appear before
must maintain the source code for that module specializations. Consistency has been a goal In
and for all non-user-callable modules which that developing the scheme, so that, for example,
module references, object (either relocatable or univarlate problems appear before multivariate.
executable) code, on-line documentation, and
(optionally) test code and results. Where The development of the present classification
appropriate, the on-line documentation scheme has been strongly influenced by the
references printed documentation such as software at hand. Experience has indicated that
manuals. All of these items now number well projections about scientific software
over 10,000. organization In the absence of such software

would be highly error-prone. Thus the level of
4. GANS: TOE GUIDE TO AVAILIABL MATHEMATICAL detail varies across the scheme. In having at

SOFTWARE most about a dozen modules assigned to any
class, the scheme also reflects the compromise

End-users of scientific software are interested between accuracy and quantity; It would be
in locating software to solve particular tedious either to find a few modules in a
problems, and are not interested In how the detailed subtree or to find one useful module
software Is organized for maintenance. The among many in a class.
Guide to Available Mathematical Software (CAMS)
provides such end-users with a problem-oriented Interrelationships among classes motivated the
Inter-library software reference. This inclusions of cross-references In the scheme.

reference takes the form of both a printed Thus, for example, class L3, containing software
catalog and an on-line interactive guide. A for probability function evaluation, cross-
detailed problem-oriented classification scheme references class C (elementary and special
Is fundamental to each form. functions). A module which performs several

tasks may be assigned to multiple classes; an
4.1 The CAMS Classification Scheme example is spline approximation. Some user-

callable subprograms are almost always used in
While each proprietary library documented in pairs; for reasons of efficiency, when
CAMS has Its own relatively consistent documentation for one references the other, then
organizational structure, none provides a only one is classified.
sufficiently extensive and detailed structure

for organizing the whole CAMS software Each module Is classified at the lowest
collection. We therefore have developed the appropriate classes. When a module performs
CAMS classification scheme (Boisvert, et al., tasks in several subclasses of a particular
1983) to synthesize information about the class, however, It is classified at a higher
software we support. This classification scheme level. This is especially common with
is a substantial modification of the Bolstad statistical software and large Interactive
scheme (1975), which in turn evolved from the programs.
scheme adopted by the IBM user's group SHARE.

As existing scientific software Is added to
The classes at the highest level of the CAMS, and as new software becomes available, the
classification scheme are: classification scheme will undergo selective

revision. Given its tree structure, however,

A. Arithmetic, Error Analysis the scheme itself ought not to undergo radical
B. Number Theory revision in the near future.
C. Elementary and Special Functions
D. Linear Algebra 4.2 The Printed CAMS Catalog
E. Interpolation
F. Solution of Nonlinear Equations From the user's point of view, CAMS manifests

G. Optimization itself as a printed catalog and an interactive
H. Differentiation and Integration consultant. The printed catalog is required by
I. Differential and Integral Equations those who do not use the computer oa which the
J. Integral Transforms Interactive CAMS resides. These users may well
K. Approximation include people not at iBS. The most recent GAMS



catalog was released as a 448-page NBS Technical aversion; .
Report (Bolavert, et al., 1984). While we do *level of In-house support and a contact J
not distribute the software documented In GAMS, person;
the catalog contains the addressee of the *how to obtain on-line documentation; and
sources which distribute the software. The CAMS *how to access the library.

% catalog Is available from the author or NTIS.
Similar Information Is given about each

*In order to satisfy the needs of different sublibrary In the partitioned library CHLIB.
users, the catalog Is organized in five
sections: The Index alphabetically organizes keywords and

phrases with pointers Into the classification
A. CAMS Classification Scheme scheme.
B. Modules by Class

*C. Module Dictionary 4.3 The CAMS Interactive Consultant
D. Library Reference
E . Index While the specific details of the on-line

version of GAMS are riot of Interest at sites
Modules by Class catalogs the software according where It Is not available, the general features
to the classification scheme. Under each class may be of Interest at sites where a similar
in the scheme Is a list of modules, including a capability Is desirable. The main reason for

*brief description of each module and the library developing the Interactive consultant Is
to which It belongs. For higher level classes timeliness. Whereas the CAMS catalog Is printed
there may also appear discussions of the types Infrequently, the oni-line data are updated
of software found In those classes, along with regularly, and hence the Interactive consultant

*Issues and problems a user should address when provides current Information.
selecting software, and references.

A user of the Interactive consultant may
The alphabetically organized Module Dictionary traverse the classification tree. When a node
contains detailed Information about each module of the tree Is visited, a count of the number of

*In CAMS, including: modules classified there and a list of the
descendent classes are obtained. A user may

a brief description; then obtain information about each modules .:
* type (e.g., subprogram, batch program); (similar to that provided by the Module
* proprietary or non-proprietary; Dictionary) at that node or may move to another
* library (and sublibrary. If appropriate) node. The consultant Is made easy to use by

membership; having a simple command syntax and Internal help
* precision (single or double); facilities.
a CAMS class~es);
* usage syntax (e.g., call sequence, commsand Users may constrain their software search by

syntax); restricting attention to portable software, to
a location of on-line documentation on an NBS software in a particular library, or to software

computer; which computes In a particular precision.
a location of source on an NBS computer (if not

proprietary); Once a user has Identified software of Interest,
a (optional) location of test programs on an NBS on-line detailed Instructions on how to use that

computer; software Is then available.
a(optional) location of sample programs on an
NBS computer; 5. * INLEBNATION

acommands required to access the module on ant
NBS computer; and The two fundamental components of our software

a(optional) names of other modules used with support are the meintenance of the software
this module. Itself, and the maintenance of Information about

the software. We have developed software tools
The contents of each library are summsarized In to efficiently manage our large software

*the Library Reference. First, the following collection.
* general Information Is given:

5.1 Naming Conventions
abrief description;
aversion; Developing naing conventions Is the first step
atype (e.g., subprogram library); in automating software management. Such
*language; conventions must necessarily conform to the file
aportability Information; structure of the computer on which the software
areferences; and is maintained, acid we have developed conventions
adeveloper and/or distributor, for several computers. For the purpose of this

paper, however, our naming conventions are
For ea ch machine oa which th e library is illustrated using UNIX path names.
supported, the following Information Is given:

4



A module's source code Is In the path classified at each node).

Library-name/SOURCE/Sublibrary-name/fodule- Each relation is a matrix In which rows are
name. cases and columns are attributes. The

attributes In the library relation are those
Relocatable (object) code is in the path itemized for the Library Reference (see section

4.2). The attributes in the sublibrary and
NBS/Library-name/Sublibrary-name/Module-name. module relations are similar."r',

In order to access a module a user need only The CAMS data base was constructed using RIM 4,
know the library in which it resides. (1982), a relational Information management

system developed by the Boeing Commercial
A similar format Is used for the location of the Airplane Company under contract to NASA. RIM
documentation for an individual module, a provides both an Interactive query system and a
sublibrary, and a library, respectively, as Fortran Interface. The interactive query system
follows: Is used to monitor the contents of the data

base. The RIM applications program Interface is
Library-uame/DOC/Sublibrary-name/Module-name a set of Fortran subprograms which may be used
Library-name/DOC/Subllbrary-name/SULMMARY to load data into the database or to retrieve . .
Library-name/DOC/SUHHNARY. data from It. It has been used to develop the

specialized programs which access the CAMS data
Naming conventions for test software, test for the interactive consultant, for the
results, reference materials, and other production of the printed CANS catalog, and for
information are more variable, database maintenance.

5.2 Software Management Procedures 6. DISCJSSION

Three categories of frequently-occurring The central purpose of the CAMS project has been
software maintenance activities have warranted to provide in integrated system of documented
the development of software tools. The first is software. The integration has been across many
software installation, and tools have been features, not the least of which is the
written for Fortran source dispersion, consolidation of mathematical and statistical
documentation extraction, and Fortran library or software under one umbrella. This consolidation
sublibrary compilation. The second category Is facilitates the communication among numerical
documentation retrieval, for which there exist analysts, statisticians, and other scientists
tools to extract module, sublibrary, and library Involved in both software development and usage. F
documentation. Finally, tools have been written While the target audience for CAMS products has
to prepare Individual Fortran subprograms (and been NBS scientists, the work has had broader
externals), Fortran sublibraries, and CMLIB for interest. Of particular Interest to the
redistribution, statistical computing community, the Committee

on Statistical Algorithms of the Statistical

1 5.3 The CAMS Data Base Computing Section of the American Statistical
Assocation has been involved with the

A single relational data base was chosen to development of that portion of the
support both software maintenance and classification scheme dealing with statistical
documentation functions. This type of data base computations. Current Issues under discussion
was chosen for its simplicity and flexibility, by the committee include providing to the
It Is used to access the data in several ways general statistical computing community a more
(e.g., to organize modules either according to general version of CAMS. This version would on
the classification scheme or alphabetically for the one hand not contain site-specific
documentation purposes and to organize the information, and on the other would reference . .-
modules by library for maintenance purposes) and software not available on a particular computer
thus Is used to develop the printed catalog, to (e.g., listings in journals). Of course, It
drive the Interactive consultant, and for would be desirable to have much of this software
software maintenance, provided through a distribution service.

Substantial effort may be required to modify the
A relational database is a collection of tables software for portability, prepare on-line
called relations. The five relations in the documentation, and prepare test software
CAMS data base are library, sublibrary, module, designd to efficiently test whether or not the
node (containing the CAMS classification software has been properly Installed.
scheme), and tree (containing pointers which
describe the tree structure of the NBS Is currently undertaking the task of

- classification scheme and Identify the modules converting all of Its central computing to the X'V-
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Cyber 855 and Cyber 205. The GAMS data base Bolsvert, R. F., S. E. Howe, and D. K. Kahaner
will be maintained on a VAX 11/785. As part of (1985). "GAMS: A Framework for the Management
these conversions, the GAMS software has become of Scientific Software," submitted for
more flexible and more portable. The presence publication. 0-

of these large computers has also motivated '.'7'
software consolidation, and as a result, more Bolstad, J. (1975). "A proposed classification
software will be supported and documented scheme for computer program libraries," SIGNUM
through GAMS. Current efforts involve adding Newsletter, vol. 10, nos. 2-3, pp. 32-39.
SPSS, Dataplot, and graphics software to the
CAMS data base. Future plans include further Dongarra, J. J., C. B. Moler, J. R. Bunch, and
modifying the data base to fully distinguish G. W. Stewart (1979). LINPACK User's Guide,
among machines In a multi-machine (computers SIAM, Philadelphia.
and/or peripherals, especially graphics devices)
environment, and providing software specifically Francis, 1. (1981). Statistical Software, A

* vector computers and computers with other Comparative Review, North-Holland, New York, 542
. interesting architectures. pp-
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AN ITERATIVE APPROACH TO IMPROVING DATA ANALYSIS IN THE CLASSROOM

David P. Kopcso, John D. McKenzie, Jr., and William H. Rybolt "

Babson College

In the future widely-used statistical software will incorporate many
more user-friendly features including some topics usually considered as
artificial intelligence. we are currently working on three projects to
prepare our students for their future work with such software and to
improve our teaching of data analysis. We are monitoring and
evaluating user-response patterns. The results of this study will be
some suggested enhancements for interactive statistical software and a
better understanding of how students analyze data. Other wcrk includes
the creation of a preprocessor to assist users in deciding the
appropriate commands for their analyses and a report generator designed
specifically for introductory applied statistical topics.

Motivtionnumber of introductory appliedMotivtionstatistics courses, only a cookbook

In contrast to a decade ago, today most aprchtsaitclanyiswh
colleges and universities use the computer is performed. That is, the
statistical software in their students are taught that entering the
introductory applied statistics courses. given sequence of commands is the only
In the future the use of such software way to handle a given problem. This
will be even more prevalent. At our lack of teaching the strategy of
small teaching-oriented college of 1,400 analysis is a major weakness in the use
full-time undergraduates and 1,600 of statistical software in the classroom
full-time and part-time MBA's, we are no today.
exception. In each of our introductory
statistics courses, the students are The strengths and weaknesses of using
exposed to at least one statistical statistical software in the classroom
package. In the past the most commonly will be more pronounced in the future.
taught package was IDA; currently all Statistical packages will become even
our students use Minitab. Among the more powerful and user-friendly in the
reasons for using such software are the future. Statistical package developers
ability to perform ca :ulations more were slow to realize that users
easily and to produce more statistical appreciated such features as is shown by
analyses, including complicated the following quote from Francis (1981,
analyses, state-of-the-art analyses, and P.2 3 ) "The notable feature of this
analyses involving complex data table is the group entitled Convenience
structures. It is often interesting to of User Language. Expressions such as
reflect that just a short time ago there lease of use', 'convenience' or
were entire courses devoted to multiple 'language' were repeated time and
linear regression which contained much again."
the same material now taught in
approximately one week. But, today as Kay (1984, p.54) mentions

"The user interface was once the last
Too few instructors who use such part of a system to be designed. Now it
software recognize that there are is the first." This "softer software",
weaknesses assocated with its use, For as Gates calls it, will probably -

example, at many schools there is only incorporate some of the features now
one package available or only one associated with artificial intelligence.
package taught so that the package (Two excellent summary articles on the
dictates the material covered in the interface between artificial
course. Many students in these intelligence and statistics are Gale and
single-package courses do not recognize Pregibon (1985) and Hahn et al (1985).)
that there are other analyses which are

*not available on the chosen package. One characteristic of future statistical
Thus the students use only that package software will be a better guidance
in their subsequent statistical analysis system of what analyses shoild be
work. New problems such as simultaneous performed. Thus the user will be4



directed to what command or series of for our later experiments, we did gain
commands should be used in order to some insight into how users employ a __

analyze a particular set of data, statistical package. In addition a IF
Another future characteristic will be discussion of this experiment provides W -.
domain-generated output in the form of a the basis for our later work.
readable report. The end-user will not
have to translate the package's output. This experiment was given as the
All he or she will have to do is read take-home portion of the final
the package's executive summary of the examination. Here are the instructions f..
analysis. The incorporation of both of given to the students: __

these features into future statistical
software will affect greatly the way 1. Examine supplementary exercise 14.47
applied statistics is taught. In order on pages 669-670 of McClave and Benson
to prepare ourselves better for our (1982).
future teaching we are creating both an
elementary preprocessor for Minitab to 2. outline the Minitab commands
assist the students in selecting the necessary to complete this exercise. -

proper commands and report generators
for some topics associated with our 3. Perform these commands in one (1)
introductory applied statistics course, run of the statistical package NEWMINI
Descriptions of our approaches to these on a hard copy terminal. (To get into
two projects may be found at the end of NEWMINI, enter NEW?41NI at the S prompt.)
this paper. In order for us to be
successful we believe more information 4. Bring your copy of this run,
is needed about how students analyze including log-in and log-off
data using a statistical package, information, to the final examination.

Knowledge about how either students or 5. At the final be prepared to answer
the average user employ a statistical questions related to this exercise which
package is quite sparse. Much work in may be based upon you NEWMINI run.
artificial intelligence has centered
around how experts feel how average Exercise 14.47 is a problem which
users will employ such packages. Then illustrates that the two independent
this expert information is incorporated sample mean problems with unknown
into the sytem. while we believe it is variances can be analyzed in three ways. '

extremely important that the experts' Namely, by a pooled two-sample t-test, a
*opinions be placed into future slope test in a simple linear regression

statistical software, we also believe model, and a one-way ANOVA test. This
that what the average user does with exercise from the course's principal
such software should also be text was selected so that the students .\

incorporated. Thus our initial work in would use a variety of the NEWMINI
preparing for the arrival of the commands. The data set for this initial
statistical software of the future is experiment was presented as two columns
the monitoring and evaluation of of eight observations. Thus it could be
user-response patterns to existing entered into the machine with no
statistical software. From this work we difficulty.

* feel that we will gain a better
understanding of how our students use a NEWMINI was just a modified version of
statistical packages and thereby obtain Minitab provided to us by Minitab, Inc.
a solid background for beginning our When someone uses NEWMINI a record of
work on the preprocessor and report their command entries is pla'7ed into a
generators mentioned above. (An file. This file also included a listing L.

*immediate byproduct will be an of the Minitab recognized errors
improvement in our teaching of such encountered along with numerical codes
software.) Moreover we will ho able to explaining these errors. NEWMINI does
provide some suggested enhancements to not keep track of typographical errors
the existing statistical software, which were corrected before being sent

to the main package. Nor does it
Monitoring and Evaluating User-Response identify fatal errors. The students
Pat terns were unaware their responses were being F

monitored.
Our initial work in monitoring the
user-reponse patterns on a data analysis Note that for this first experiment we
problem was performed on a small group asked the students to perform only one
of students taking a second course in run. This unrealistic requirement for
applied statistics. Although we modern data analysis in an interactive
designed this work to set the foundation mode was introduced because our main
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goal was to test how well NEWMINI Table 1
* worked. That is also the reason we

required the students to turn in hard Preliminary Summary
copy runs of their work on NEWMINI. We of First Two Experiments
requested log-in and log-off information
for this run in order to guarantee that Number of: CA0 CA]
each student performed the assignment on
his or her own account. sections 1 4

students 18 150
At the examination we collected the
student's hard copies. Then we compared runs 18 572
these runs with the files created on
each student's account by NEWMINI. At command lines 291 12259
this point we discovered that we did not nondata lines 252 11750
have the expected one-to-one valid command lines 228 9787
correspondence. Somehow a number of invalid command lines 7 1356
NEWMINI files had disappeared. This was greeting lines 17 607
probably due to a file saving snafu by data lines 39 509
our computing center at the end of the
semester. Based upon this information error lines 14 1790 I
we decided to automate further the 1 common error lines 14 1496
collection of files generated by NEWMINI 2 common error lines 0 242
for our future experiments. 3 common error lines 0 11

4 common error lines 0 2
We wrote a program to process the data 5 common error lines 0 0
in the 18 NEWMINI files we had obtained, individual command
This program produced the following 15 error lines 0 39
pieces of information: student section
number, student ID number, session
number, type of entered line, command ID command lines, and 17 were greeting
number, command string, number of lines. (The reason there were only 17
characters in a line, number of ;entries greeting lines is that one student "-"
separated by blanks in the line, whether emptied the contents of NEWMINI file in
or not there were subcommands or error order to free up some file space. This
messages following the line, the number also led to our above mentioned decision
of Minitab recognized errors along with to automate the data collection process
their error codes, the arguments in further analyses.) From Table 1 we
following HELP and SAVE commands, and see that the 14 errors recognized by
the number of data lines following the Minitab were relatively simple errors in
given line. that only one error appeared on each

error line. Thirty-five percent of
For this initial experiment section and these errors were errors of improper
session numbers were constant. Entered command name designation.
lines were classified as to whether they
were a valid Minitab command, a data As mentioned above, we had originally
line, a Minitab greeting line, or intended this experiment as a way to
something else (usually an error). For pretest our information gathering
this initial experiment section and process. But to our surprise, we
session numbers were constant. This gathered some insights into both r"
information was entered into Minitab for potential software improvements and a
analysis. In this process we created better understandina of the data
additional variables from the entered analysis process. .de noticed that a
information. For example, we created a larae number of these students attempted
variable which identified the command to use Minitab's SET command to enter
classification of each valid command two variables rt a time even though SET
line. This classification scheme was is designed to enter one variable at a
based upon the 20 command categories time. F,)- example, SET Cl is valid, but
present in the Minitab documentation. A it is not valid to say 9FT Cl, C?. In
preliminary summary of this first addition few stiudeit took advantage of
experiment is presented under the CAO the horizontal lata entry featurr
(Computer Assignment 0) column of Table available in SET. We also observed that "
Si. a lot of these relatively advanced

studnts just restarted after they made
From this table we see that 18 students a data entry error. This may have been
entered 291 lines in performinq their 18 due to the small data set but it poisoted
runs. Most of these lines were nondata out to us the potential wastefulness of
lines. of these 252 lines, 228 were repeated data entry. We now believe
valid command lines, 7 were invalid that we should demonstrate more exampies

:I.
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of data correction than we currently do. Minitab run. This sequence shows that
the student should first enter the two

Our overall observation was that these variables, one containing the data and
students had mastered data analysis the other indicating the appropriate
using an interactive statistical package sample, label these variables, and then
fairly well. We saw this by such things print out the labeled variables for .. -
as the paucity of errors and the fact verification. Then the student is ready
the two requested HELP commands were to perform the requested three analyses.
followed by the command on which HELP In our opinion this is accomplished by
was requested. This impression can also performing a two-sample t test with an
be seen in Table 2 and Table 3. indicator variable (TWOT), plotting the W

*data, performing a regression after
Table 2 requesting a complete set of output

(BRIEF), and performing a one-way ANOVA
CAD Expert Data Analysis Flow Chart with an indicator variable (ONEWAY).

Finally the student should leave Minitab
by STOPping his or her session.

Table 3 is a data analysis flow chart
constructed from the students' modal
sequence of Minitab commands. In

-. contrast to Table 2 this table also
MT8 SET END NAME includes the number of students who

4 followed a specific path. For example,
PRIM SAVE OMIT eight students started with a READ

command while eight students began their
run with a SET command. After using

DESC HIST these commands 20 students ended their
-P data entry by issuing an END command.

STOP The modal next command was PRINT. That

is, most of the students printed out
their data entries for verification.

From the PRINT command the modal command
responses were TWOSAMPLE (a two
independent sample command involving two
columns of data) and REGRESSION. This
split probably occurred because a number
of students did not perform any

Table 3 regression analysis due to the fact that

exercise 14.47 included regression
CA0 Modal Data Analysis Flow Chart output from SAS. The modal response

after TWOSAMPLE was a JOIN command. This
command was necessary since the data

162 needed to be restructured in order to
perform a REGRESSION. Thus it was
followed by a SET command. After

MTB SET' ENDREGRESSION the modal response was the
AOVONEWAY, an ANOVA command involving

two columns of data. This command was
then followed by a Minitab STOP command
in the modal flow chart. The students'

121NAME 1 modal responses covered all four parts
1211 of this exercise, data entry, two-sample

- t test, regression, and one-way ANOVA.

PRIM HIST DESc While their response patterns were not
S. identical to the expert's pattern, their

4 33 patterns were reasonably close.

The students for our next experiment
were members of four sections of an
introductory applied statistics course. -.

Most of these students were freshmen who
Table 2 is a data analysis flow chart had never dealt with a statistical VI
that we constructed. It is our opinion package before. As for computer
of the expert's sequence of Minitab expertise all of these students had
commands that should have been entered either taken or were taking an
in order to answer exercise 14.47 in one introductory management information

'A-
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course in which they are required to freshmen. Table I also show that the .
write BASIC programs on Babson's VAX. students working on CAI entered many
Thus, while all of these students were more error lines; something to be

* Minitab novices, all had some expected by this group of naive users. *

familiarity with the environment in
which Minitab resided. A number of other interesting

observations come forth from our initial
This experiment was given as their first examination of the data from this
computer assignment. For this project experiment. For instance, the number of
they were asked to describe the data runs ranged from 1, by 24 students, to
present in Table 4. 12, by 2 students. The median number of

runs was 3. The median number of -- 4.
* Table 4 continuous data lines entered by the '%.

students was 1 due to the large number
State and Local Per Capita Tax Burden of students who used the SET command to

in Fiscal 1982-1983 enter the 51 pieces of data from the
map. The two most frequently used
commands were PRINT and HISTOGRAM. These
commands were entered 9.68% and 9.07% of
the time, respectively. Based upon the
experiment these responses were no
surprise. But it was surprising that 33
different users entered the

- .u -,KRUSKAL-WALLIS command a total of 37
A4-.. different times for this assignment

dealing with descriptive statistics. %
Another expected response was that the
students requested HELP on the HISTOGRAM
most frequently. The most common error

A L *",- was the entry of an illegal command
•. which constituted 23.70% of the errors.

From observing items such as the above %

from the 572 runs of the 150 students
who participated in this experiment, we
determined six places where the Minitab
statistical package might be improved.

We were interested in monitoring how Most of these improvements deal with
these students, with less than two weeks increased user-friendliness although our "

' of limited Minitab classroom exposure, first suggestion might be viewed as
• would enter and manipulate the data in making the package less friendly. To

Minitab from the given map. In addition our surprise a large number of students
we were interested in learning how these were entering lines without any
students would describe the data and delimiting blanks. For example, DESCCI
display the data graphically using the instead of DESC Cl. While use of this
Minitab commands. entry method did not cause the user any

trouble initially, it led to great
To perform this experiment the students difficulty when complex commands
were asked to access NEWMINI through a appeared. For example, the entering of
program called CAl on a hardcopy HISTC1650 250 for HIST Cl 650 250 caused
terminal, not a CRT. In that way we some students frustration. Thus we
obtained hard copies of their runs to propose that blanks be required as
check against the monitoring we did delimiters in all Minitab commands. We
using NEWMINI. also propose the addition of at least

two new options in Minitab: a RANGE
The second column in Table I presents command and a LABEL ROW command. Many
our initial summary of this experiment, students tried to use these features. We
Note that we collected a lot more data would like Minitab to recognize synonyms
in this experiment. This increase was for the STOP command. One leaves
not just due to the larger number of Minitab by issuing a STOP command. If
students. It was also due to the nature one enters an EXIT or QUIT command, they
of the problem (Which was mch more are told to enter STOP. From the
open-ended than CAO), the nature of the frequency of such requests we believe
assignment (a one-week assignment, in much timo can be gained by allowing
contrast to a one-run take-home portion Minitab users to leave a Minitab session
of a final examination), and the fact via STOP, EXIT, QUIT, BYE, etc. We also
that this experiment involved mainly feel that a large number of command
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errors could be eliminated if Minitab Table 5
accepted commands in which two
characters were transposed. Thus, we CAl Expert Data Analysis Flow Chart
would like to see the acceptance of DECS
and HIEGHT for DESC and HEIGHT. We a.

believe that Minitab should better
publicize the fact that operating system -
commands can be run from within Minitab E -°E

by first specifying SYSTEM. Many of SET NO

these naive students-users tried to
obtain a directory listing of their > NAME
files or to delete an existing file in -
Minitab. In addition we would like to T > PLOT \ r

see Minitab provide a local command - o R'-EGm
warning option so that an individual .
location could alert their users of ( NEW (, STOP
Minitab's inability to perform a so
specific task. Similar to a macro
facility, this feature could be used to

tell students that they could not run
BASIC within Minitab.

We obtained an embryonic understanding
of the data analysis process by 'o -
observing the results from the students' Table 6 '.r
CAl runs. Here are a few of our
discoveries. Of the data entries 71.29% CAI Modal Data Analysis Flow Chart
were followed by an END command. Thus
the majority of the students concluded
their data entry in the preferred way. _ READ"
Almost one-third of the students PRINTed .20

our their data after entering it. It MTB END .
appears that even in the first two weeks
of the course a surprising large number -

of students were verifying their entered SET / ,'
data. On the negative side most of the _i4
students made inefficient use the the 13

Minitab SAVE command. There were 299 REGRJ( AOVO STOP)

SAVE commands and only 305 RETRIEVE
commands! In contrast to an expert P'IN
these naive users only seem to be using /T-""8
their SAVEd data files once. It was
also discouraging to see how poor the TWOS JOIN
choice of names of the SAVE files were.
We believe that most people would have
trouble recalling what was the content
of their SAVEd files from the selected
names. Finally we noticed that a major
error was designating the wrong number
of arguments for a command, outlying observations, repeat the " €

description and displays, and finally
We also learned something about the data leave Minitab. The data analysis flow
analysis process by contrasting the data for the students was not as straight

analysis flow chart of an expert (Table forward although the students did use
5) with the modal data analysis fiow basically the same commands. They used
chart of the students (Table 6). the SET and END commands a number of
According to the expert the sequence of times before issuing the NAME command.
commands to prepare the data for this (The NAME command is issued repeatedly.)
experiment would be to enter the data by This was probably due to the errors
employing the SET and END commands, these inexperienced Minitab users
label that variable by using the NAME introduced. They probably used the
command, verify the entered data by PRINT command repeatedly for the same
issuing a PRINT command, and then place reason. A number of HISTOGRAM commands
the data into a Minitab file by entering followed. The next node on the
a SAVE command. The expert would students' modal path is the DESCRIBE

DESCRIBE the data, produce a command which was usually followed by %
well-constructed HISTOGRAM, OMIT the another HISTOGRAM command. The only d

'i "~~~~~ ~~~...... . %... .... . .. .,i. . .. ".'------ '' °"-)."-"""° ""''". ""i"2%"""'"" ?



other branch of any size from HISTOGRAM Creating an Elementary Preprocessor
was to a Y prompt (probably to guarantee
the printing of a long histogram). From As mentioned above we are in the midst
the Y prompt most students went back to of creating a preprocessor to aid our
the DESCRIBE command. Thus this modal students in the selection of the
data analysis flow chart produces a path appropriate Minitab command for a
which does not reach the STOP command, a specific analysis. This front-end will
big difference from the path taken by be designed similar to the charts

Statpath software outlined by Portier
To determine why the students did not and Lai (1983). initially we will base 7
reach the STOP command, we constructed a our preprocessor on Version 85 of%
data analysis flow chart starting at Minitab. - .

that command. A portion of that chart
may be found in Table 7. Developing Report Generators for

Introductory Applied Statistics Courses

Table 7Our report generator plans include
Path to Stop backends for the following topics I

usually found in an introductory applied
E~rostatistics course: confidence intervalsErrorand hypothesis tests for the population

mean and for the difference between two
Error population means, simple linear

- - regression, and chi-square tests for
STOP -independence and for equal proportions.

<STOP )We also plan to produce incorrect
reports on these topics so that the
student can be taught to criticize the
computer-generated output.

Future Directions

We believe the work we have began in
monitoring and evaluating user-response
patterns will produce a better
understanding of the data analysis

Here we see quite clearly what came process; thereby enabling us to better
before the conclusion of a Minitab understand the students' techniques and
sess4.on. The modal response was an to develop our preprocessor and report

*error. This happens 96 times. And generators. In addition we will be able
before this error 557 times another to suggest enhancements to existing and
error occurred. The way most students future statistical software. We also
concluded their Minitab sessions for believe that there is much more that can
this experiment was in frustration, be gained by extending our initial work.

Four possible extensions are more varied
We are gathering another set of data experiments, the introduction of more

*from the students who are taking their variables in these experiments, better
*introductory applied statistics course, collection devices, and more complete

This experiment deals with a linear error analysis.
regression modeling assignment. In
constrast to being the student's initial Additional experiments to understand how

*computer project, it will be their last, users employ statistical software will
* Wehopeto eterine hatrespnsebe based on analyses other than those
pattern changes, if any, have occurred mentioned. in addition all these
in each student over the course of a experiments could be performed by
fifteen-week semester. Here we plan to students at other schools and by
provide to each student a different, but non-student users of statistical
related, data set. In this way we hope software. Monitoring and evaluating of
to prevent sharing of commands by a user-response patterns could also be
group of students. initially these data performed on other types of statistical
were to be made available to the software. In contrast to Minitab, an
students in a computer-file to save the interactive package with command lines,
students some time, but in order to there are batch packages and interactive
monitor any difficulties with data packages with prompt command lines,

'.'entry, we will have the students enter cursor menus, and mouse menus. User
the data into the computer themselves, demographic variables should also ber
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brought into these experiments along Chambers, John M. (1981), "Some Thoughts
with time variables for experiments on Expert Software", Computer Science
dealing with interactive systems. and Statistics: Proceedings of the 13th

Some ideas for better collection devices Symposium on the Interface, 13, 36-40.
include devices which capture all the Chambers, John M. et al (1981), "Expert
user entries including errors which the Software for Data Analysis", Proceedin s
user corrects before sending them to the of the 43rd Session of the International
package. Completely automated devices, Statistics Institute, 294-308.
possibly part of the software, are
another possibility. Finally devices Dixon, W. J. and Jennrich, R. 1. (1972),
which enable one to examine random "Scope, Inpact, and Status of Packaged
samples of the user population are Statistical Programs", Annual Review of
desired extension of our work. Biophysics and Bioengineering, 1, ..,

50-528.
In addition to dealing with the
forgiving errors of syntactical or Francis, Ivor (1979), "The Statistical
semantic natures complete evaluation of Profession and the Quality of

Statistical Software", Bulletin of the
user-response patterns should analyze

typographical errors, fatal errors, and International Statistical Institute, 46,

logical errors. Note these errors, .12-"6.

especially logical ones, will bedifficult to examine. Francis, Ivor (1977), A Comparative "-.
Review of Statistical Software,
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ABSTRACT

Traditional databases accommodate statistical applications - and other applications - at an abstraction lc'cl
higher than the user level. But statistical analysis possesses exploitable properties that can be used to integrate
the realization of statistical functions with the database activity of data acquisition. If statistical functions arc
parameterized, it is easy to see that they share many common parameters. These parameters arc both updatablc
and additive. Statistical functions and their parameters are explored together with round-off errors resulting
from updates.

I. Introduction lowing parameters: sample size, n; the sum or products of A

and B; the sum of squares for A and the sum of squares for B.
Attention has been drawn recently to the inadequacy of On the other hand, to calculate the standard deviation for A

current databases in accommodating statistical analysis 12, 12, (or B), the parameters are: n and the sum of squares for A (or
24, 311. The inadequacy arises from the intrinsic structure or B). So, if the parameters for the correlation coefficient are

statistical analysis and the inability of the underlying models available, no extra retrieval is necessary to compute the stan-
of database systems to capture and correctly model statistical dard deviation. The calculations for a multiple regression
structure efficiently. The proposed model is concerned with model begin with a matrix of Pearson's correlation coefficientsstrctue eficenty. he ropsedmodl i cocered ith (whose parameters have been mentioned above). The Same -"
exploiting three properties of sthtistical analysis that result in ( p r b n o h
inefficiencies when realized in traditional databases. They are: matrix is the starting point for factor analysis and discriminant
(I) the nature of statistical queries (2) the nature of statistical analysis. Thus, thinking of statistical functions in terms of

calculations and (3) statistical classifications, their parameters can save redundant calculations. The param-
eters of many statistical functions ranging from simple
descriptive statistics to multivariate analyses, will be explored.

!.1. Statlstlcal Queries An interesting property of these statistical parameters is that

Turner Ct. al. [35] have distinguished three types of queries - they are 'updatablc' in the sense that if P. is the parameter for

informational, operational and statistical queries. Statistical n points, it is possible to compute P-+1 given n, P, and o,+ ,
queries request over 10% of the records in a database while where a.+ is the new datum. The updating formulas for some
the other types request less. One consequence of this is that parameters have been known for some time starting withth ohe yps euet es.On cneqeneofthsistht Welford's pioneering paper 1371; and more recently also 16, ,
response times are high when statistical queries are made. ef, pineering pe t 37s an moreqreenlyalsoe[6Another important fact is that databases, in both research and 19, 22]. The meaning of this is that if all required parameters,--

Another i tare known a priori, they can be kept current during datapractice, have been geared primarily towards informational, acquisition, i.e., during insertions, deletions and modifications.
and to a lesser extent, operational queries - the concept of pri- Updating some parameters introduces additional round-off
mary keys (informational) and secondary keys (operational) errors, ho e arfthrs for omelram-
and the subsequent theories underlying the various normal ers hbee ineiate [6 21, 2,3.Ts paredform 13 10 11. Satisica qurie hae ben srbodinted ets has been investigated [6, 21, 27, 38]. This palper extends
Asfrma result,10, II.manmadSttistiCattributes such as socialUrbrdinated these investigations and show how they affect the final func-
Asmaeres, em ayeenmder, atrib e sucth o security lion values. It should be mentioned that batch updates are also
number, employee number, etc., have become the focal point psil sn h diiefrua rtascintp

possible using the additive formulas or transaction type
for retrieval in databases. As Turner ct. al. have pointed out,
statistical queries are based on more natural attributes like 'all updates 131).

females', 'all black employees', 'minority engineers' etc. The
consequence of this is that a statistical user is faced with the 13 " "-'
task of specifying statistical queries in terms of informational 1.3. Statistical Classifieations
and operational queries. Very complex formulations often
result I17). So, we can conclude that the statistical interface in Classification is an inherent part of statistical analysis. Many
many commercial systems is unfriendly, classification schemes take the form of 'treatments' or

'categories' by which some metric is grouped. For example:
suppose there is a 'category' attribute, RACE, whose domain

1.2. Statistical Calculations is (hispanic(h), white(w), black(b), other(o)), by which dir-
ferent users choose to classify a 'data' attribute, SALARY. '-

A major source of redundancies in statistical applications is Note that a category is a member of the power set of the
in the function calculations. If statistical functions are domain of a category attribute. Let us suppose that we have
parameterized and viewed in terms of these parameters, it will the following categories: wbh, bh, and o. We shall associate
be seen that many of them share common parameters. For with each category, a set of parameters calculated on the data
example, to calculate the Pearson's correlation coefficient attribute, that is necessary to realize some statistical
between two variables (attributes) A and B, we need the fol- function(s) for the category. So if a user (or users) is

'*%.



interested in the mean SALARY, the associated parameters been to regard these parameters as final function valucs in

are count and sum. Now, suppose another (or same) user is their own right rather than as parameters to many statistical
now interested in the mean SALARY of the category, bho, no functions. The additivity of these parameters also warrants a
additional parameter gathering is necessary since this can be separate treatment - updatability (a special case of additiviy) i1'
derived by combining the parameters for bh and o. Almost all is employed during data- acquisition to keep parameters
statistical parameters are 'additive'. The additive operation of current, while additivity is used for the derivation of new ~ ,

sum or count is an arithmetic addition. The additive operation categories and/or merging of batch updates into a main data-
of many other statistical parameters involve many arithmetic base. The updating and additive formulas are derived by sim-
operations. pie algebraic manipulations. These formulas are now

presented and many statictical functions are parameterized.
The general rules for deriving new categories are by set union
if the categories arc disjoint (addition of parameters) and by In what folkuws. the beginning letters of the alphabet, .4, B
set difference if the two categories have a super/sub-set Tela- C, ... are single attributes whose values in a table instance of -,

tionship (subtraction of parameters). Thus, in the above exam- n-I records are la1a. h1,h2 .-b._J .. respectively,
pIe, the additional categories that can be derived are wbho, where ..jis used to denote a multisct. IV', X, Y, 7 will beZ
wo and w. Again, it is obvious that redundancies can exist if used to denote sets of attributes. For instance, X-A 1A... A
these deriving rules are not applied, and d=IXI, is the dimension for the attribute set X. The

records here will be drawn from the cross product of the
domains of the attributes in X and corresponding small letters

2. Related Work are used to denote the records.

Many attempts have been made to accommodate some of the I.Udtblt
problems that have been stated. The two most common 3..Udtbiy
approaches are either to build specialized statistical databases
or to integrate statistical analysis tools with commercial data- Udtblt eest o ocluaePX~fo ().

bass. omespeialze sytem inlud: he se f ivered and the new datum, x.. The updating formulas for many
J f~~~~ile structures, like in TDMS [41; the use of 'transposed' files prmtr ons us u qaesmcbd po

such as in RAPID (351; and the use of special data structures duct sums (and powers); etc ..- are of the form
as in SUBJECT [7]. Integrated systems take the form of pro- P(X).=P(X)._A+I(X.), PMO)-O

r viding better interfaces between the two systems while pro-
viding a rich operational repertoire for each subsystem. Such where, flx.) is the initial calculation for the term to be%
systems will include REGIS [I81, RIGEL 128], etc. There are added, depending on the parameter. For instance, for count
more examples 1311]. The first approach lacks generality. While and sum, f(x,,) is the identity function; for sum cubed,. ~

f~~~ ~~ (x,) =a1a3.. t

our approach here is of the second type, it differs from others 2 (x)aa.. .;ec
in that it models the statistical subsystem at all three levels of Ioeetefrua o te aaeesrqiemr
classical database design, with interfaces between the two sub- Hoert fmuafrohrprmtrseqie oe
systems at the two top levels. The preponderance of commer- than one addition operation. For the mean (which can be
cial systems tends to suggest that integration is the preferred parameterized), Welford [371, gave the following
means of reaching many statistical users. (-

As mentioned earlier, the updatability and additivity of many () PX.+I1fX) (X=O

statistical parameters have been known. But these have been Similarly, the sum of squares is
mostly limited to means and standard deviation calculations.
In SYSTEM R 111, the 'trigger' concept is updasability applied P(A) -P + 11P-1~t

P(A).-P( P(A-o-,

to simple aggregate functions. Triggers lack globality. Koenig I
and Paige in MADAM [19 , allow one to define runctions in en t o rd ts i
terms of simpler functions (parameters) - mean defined in and
terms of sum, for example. No global sharing is apparent.

Sato [301 has given a system of classification and rules of
derivation. i owevr, the categories are pairwise disjoint and where At is the parameter mean. Generally, for the sum of
the database is static. We are considering a more general clas- squares and the sum of products, d a= and d =2 respectively.
sification scheme in a dynamic database. To further reduce the roundoff errors from the increased

number of operations, Rekan [381 proposed for the mean and
Many investigations 116, 21, 27, 381 about the size of round- sum of squares, the following;
off errors have been carried out based on Wilkinson's work
[39[. Most of them have been empirical however. The reason
for this is probably due to the tedious nature of the much and
often desired 'forward' analysis involved in these algebraic P . ... arige atiew sa
processes. But Chan and Lewis [5) have developed theoreticalr( [.•,] )s sed (o enoeA ) I(A ),,
upper bounds for mean and standard deviation calculations. An additional advantage is that the sum and sum squares can

be derived more accurately. '

This prer will first concentrate on the statistical aspect of Downdating formulas can also be derived by algebraic mani-
this model and later, the integrated system. pulation of above formulas - this corresponds to the deletion

of a record from a database. West has shown that Reckan's

formula gites a better accuracy than other alternative
3. Statisical Parameters methods. However, in the context of a database, separate
oh uto i ityoe statistical aramters ha eeninvdt- parameters can be kept for deleted records using onlX the

Iheof sicaluethers hsee inved updating formulas. ,hen at the time of actual function co-mpu-
tigatcd [16, 21, 22, 37, 38, 40]. The treatment however, has tation, the parameters can be 'added' together.

'uha4nR'D[5 n h s fseia aasrcue utsm adpwr);ec..-aeo h om.. """

asi.UJC 7.Itgrtdssestk h fr fpo (),PX),.'~,) (~-

riigb'e nefae4e'e h wosseswiepo
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3.2. Additliity is used for calculating the parameters of derivable catcgories.

Additivity is explained in the following way. Let C(X), be a
multiset of size n* and P(X)i, the associated parameter. Then 3.3. Statistical functions and their parameters
additivity is: a) given P(X)j, i- I,.. A, compute P(X) +

, for the
multiset C(X)

+ of size n, I =nl+n2+ +n,.. That is, given Some representative statistical functions and their parameters
the parameters of k multisets, find the parameter of the are discussed. These functions can be found in most introduc-
merged set- Or b) given C(X)p and C(X)., iwI,...k such that tory statistical textbooks and are offered in many statistical
C(X)pE C(X)j, compute P(X)- for the multiset C(X)- of packages [23, 29).
size "I, where m =n,-n t-n-...-n and
C(X)-.C(X),-C(X)I-C(X) .... -C(X)k. That is, given the Basic screening functions consist of frequency count, sum,

parameters of a set of multisets and the parameter of a mul- mean, variance and standard deviations; and to a lesser
tiset containing them, calculate the parameter of the resulting extent, skewness and kurtosis. The parameters are counts,
multisct after removir. all the smaller ones from the big mul- sum (or mean) and sum of squares for most of them. For
tiset. The additive formulas for statistical formulas are now skewness and kurtosis, the parameters are count, sum, sum
given without proofs. The proofs are given elsewhere [24]. square, sum cube and sum fourth. A measure of correlation

between two attributes frequently used is the Pearson's corre-
For the parameters count; sum; sum square, sum cubed, ...; lation coefficient and the parameters are counts, sums of
product sums; etc, the additive formulas are of the form squares and sum of products.

and P(X)--P(X),-Ek=P(X),. Contingency tables are two dimensional tables on the attri-

butes A and B with counts in each cell. Some functions asso-
For mean, we have that elated with a contingency table arc X"

, 
0, Cramer's V, the

contingency coefficient C, tau B, tau C and Spcarman's
correlation coefficient. All these functions can be computed

and from the cell counts of the table - thus, the parameters are
counts.

A class of statistical functions are used for paramctric and
non-parametric hypothesis testing. In the former some infor-

The additive formulas for sum of squares are mation is known about the population. In hypothesizing about
a single mean where the standard deviation, a, is known, the
standard normal statistic, Z, is used, where

and
P(X)- =P(,A )V ,A% (X)2-r k lP(X), +j,A, (X),1

)  (M (A )-A0)." "

-S1 Z " 0/2

and po is the mean being tested for. If the population is nor-
where I is the mean. mal, the T statistic is used and the formula is similar to that of

Z except for the sample standard deviation substituted for a.
The parameters for both Z and T are counts, sums and sums

For the sum of products, we have of squares. The parameters are the same when hypothesizing
P(X)+-&=(P(X)+nAI(A),Af(B))-nM(A )+A(B)

+.  about two means and one or two variances (F statistic). Sign
test is a form of non-paaanetric hypothesis testing that uses a

and Z statistic computed from counts. For run tests on the other
P(X)--P(X),+nAt(A ),(B phand, counts can only be kept incrementally if the input is

serialized

+n,Mt(A ).(B),)-mM(A)-M(B). Experimental classifications are concerned with the means

The formula has been given here for X-AB, i.e., d =2. It can and variances of k populations - the entire population having
easily be extended for d>2. been subjected to at least one treatment. One-way classifica-

tion is concerned with the means and variances of A popula-
The condition number, i, of a multiset is a measure of how tions resulting from one treatment. In a database context, a
wcl conditioned the numbers are. I as defined by Chan and treatment might be the category attribute RACE and the
Lewis [5) is given by equality (or inequality) about the means of data (or summary)

Ic ))/((n_ ) -attribute, say SALARY, the point of interest. If the popula-
tions are normal and have the same variance, the model equa-

where D is the standard deviation and I If(C(X)II is the tion is given by
Euclidean norm. I is a parameter used to keep track of how
good a computation is given the structure (relative magnitude) SST=SSE+SS(Tr),

of the numbers. it is updatable. The additive formula is, where SST is the sum of squares, SSE is the error sum of

#+-((r.,(S(A )+nAl(A ),
2
))IS(A )+)1/a squares and SS(Tr) is the treatment sum of squares. Express-

ing this model within the parametric framework gives,
and ( I ,+ 1( ,4 )p3_ '- ~(S(A ),I, +nA(A )?))/S(A )-)'/a, . ...... [ .- ()t

wherc S and M1 are the sum of squares and mean respectively. + ,'.,,(t(.4 ),-M(A )4)7.

c hae now seen both the updating and additive formulas of Thus, the parameters are the sum of squares, sums and counts.
almost all the statistical parameters that will e needed. Analagous formulas are derivable for the general n-way clas-
Updating is used to keep parameters current while additivity sification problem with the same parameters.
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Among th: class of statistical functions in multivariate able floating point numbers in single and double precision
analysis, perhaps, the most common arc multiple linear rcgres- respectively, on a given computer.
sion, factor analysis and discriminant analysis. For this class I
of problems, the beginning point of computation is the square -. ;Y
matrix 4.2. Errors In Parameters

[Pu iS'~jn, For sum, T.,

where is the number of variables (i.e., attributes) and Pi is I AT. I-< ,32 II A I jp+O(P
2 ).

the Pearson's correlation coefficient for each pair of variables. General sum of k -th power parameters of the form
For linear regression, the variables include both the depen-
dent and independent variables. Discriminant analysis may IAT.(k )I- ,
require more than one such matrix. Thus, the parameters for'-
this class of problems are those for the Pearson's correlation have errors given by

coefficients - sums, sums of squares and counts. IAT. k)lS(pi+nti
2 ) IA Ili'p+O(p2

).

Many statistical functions and their parameters have been dis- This formula is easily gencralizable to higher order product
cussed. But there are some statistical functions that do not sums.
easily lend themselves to this parameterization. They include For the mean, many possible updating formulas exist. We give -

minimum, maximum (and so, range) and median. The reason the esul for p si upan formula wcis amogst

why this is so is because each of these functions is an attribute the result for appplying Reckan's formula, which is amongst

value of a record in the database and so if this particular the least:
record is modified (or deletedl, the database has to be JAT./ _(( 2 /3),,il2+4 )/ IA I jp+Oo

2
).

scanned for a new function value. However, it is possible that
for such a function, there may be many records with its value
and so counts can be kept together with the function value of Various formulas exist for the computation of the sum of

such records. Thus, no scanning is necessary until the count squares. The bound for Reckan's is given. The error is

becomes zero. JAT. J<pT. +(3.414+n +n /2)l I A 112p+O() LA

and for the sum of products,

4. Error Analysis IAT, I-<(nt +3)T~p+O(p
2

).

As pointed out by Chan and Lewis, the choice of the mean

4.1. Overview computation method does not affect the the error in the sum
of products.

Use of the various updating formulas in computation will
mean increased floating-point operations. Floating-point
operations result in errors due to round-offs and catastrophi 43, Statistical Functions

cancellations. The size of the error also depends on the com-
puter (word size, guard bits, etc). Thus it is important to With the paramcters in double precision (2t digits), these
understand the nature of these errors while using these updat- functions will be calculated in double precision and then

ing formulas. A model for studying the size of these floating- rounded to I digits. If F. is a final function value, we are

point errors has been developed [39]. Most analysis have been interested in the relative error - IAt I IF.. Recall that e is the .

empirical however. The reason is probably due to the tedious single precision epsilon.
nature of the much often desired 'forward' analysis in these
statistical processes. In forward analysis, we desire to know For sum, the relative error is,

the pertubation introduced in a function F as a result of the IAF. I
perturbations in a multisct C(X) - i.e., given AC(X), what is F

)

AF? In particular, the relative error of F (AFIF) is of F.
interest and is generally expressed as jcAC(X), where ic is the For the mean (Reckan's), the relative error is,
condition number of the multiset.

Chart and Lewis (5, 6] have a rramework rrom developing IAF,,I .-theoretical upper bounds for some of these complex statistical F .

formulas. From a set of axioms, upper bounds were developed
for means and variances. Some of these bounds are expressed Many statistical functions having the sum of squares as param-
in terms of oc, the condition number (defined above). ic> I eter share similar bounds - these include variance and stan-
always and for large it, it is approximately MIS. the recipro- dard deviation. For the variance,
cal of the coefficient of variation. In general, ic-I implies the IAF.I <('i +4)p+£+(.94,t+14.SntiP)Kp+O(p),"
numbers are well conditioned while numbers with icwl are F <
badly conditioned- It is shown that errors for means and vari-
ances are proportional to i or 2, using Welford's. This error is proportional to r. As stated by

Chan and Lewis, the error is independent of r if the standard
1his approach is used to find the errors for all statistical two-pass method of computing the sum of squares is used (but
parameters and functions (excluding those that involve only this method is not updatablc) until r grows larger than I/p'/2
counts (or sizes) since the computation of the parameters when the term in O(ca'a) becomes significant. The error is
involve only integer arithmetic) It will be assumed that the proportional to r' if some other methods are used [5, 24].
paametcrs are accumulated in twice the precision of the final
function %alues to mitigate the errors. Absolute errors are For parametric hypothesis testings, the relative errors for both
computed for the parameters and relative errors for the fune- the Z and T statistics are,
lion values In what follows, e and p are the smallest represent- ZL .
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IAZ. p in a few. This crror is also dependent on r, the condition

Z. <3p+e+(2n'+4X(n-IS number. Some runs similar to the ones performed by Chan
-. and Lewis were performed on a DEC 1099 for validation. The

results were generally 'good since most of the errors occur F
/((A)-))p+O()while performing double precision arithmetic - for instance,

for it -10000, in the worst case, at least five digits of accuracy
and was maintained in variance calculations on the average

(DECC 1099. can hold 8.429 digits).T .< 3p+e+((n +4)p+(.94n +4.41 gn 'i2)Pp)5 ."

T. With the theoretical upper bounds, it is possible to monitor the
type of accuracy (the number of correct leading digits) for

+(.667nS+4X((nl)s)S/(Af(A ).-po))mp+O(p2 ), each parameter. Intolerable accuracies due to a large n can be
rectified by recalculating the particular parameters from the .

underlying database but this time, breaking up the parameterswhere Al and S arc the mean and standard deviation respec-

tively. The errors for all other forms of hypothesis testing - into say, p, smaller parts. These p parts can then be added

two means, paired sam p(using the additive formulas) before final function values aretwo eans paied smpl test and variances - are propor- .:
tional to K and are O(n

U
1) in the worst case 124]. calculated. Too many insertions and deletions may also war-

rant occasional recalculation of parameters.

Using Welford's method for the sum of squares in computing S r l oal t
Pearson's correlation coeffcient, the error is Since errors resulting from down-dating (removal of a datum)

ear l arc larger, it may be advisable to calculate the parameters for . .

IF <(n +4)p++(.667pi"+4n)((1-I)5((S(A ).-(A removed data separately. Before function calculation, these
F (i, + (6parameters are then subtracted to get the actual parameter

values - recall, the P-s.

/( la.-AI(A ). I)+(S(B).,(B)/(Ib.-A(8). I)))p

5. The Integrated Model

+o(0),
5.1. Oerslew

For some constants a. and h.. Again, the error is proportional
to Kc and Pi. A schematic representation of the model is as shown in Fig. I.

For experimental classification, the errors for one-way classifi-
cation are, 5.2. User Leel,

JaSSE <kp- max)LAT+O(. 2 ), Users are allowed to specify functions of interest. These i

SSE - tions are drawn from a catalog provided by the DBMS.. .
parameters and their updatable and additive chara "

SS(Tr )1 <(, +4)p+O(pa) are known to the system. These statistical functions o ; ,c
SS(Tr) data attributes, SALARY for example, that are classified by

and some other category attributc(s) like RACE, SEX, AGE, etc.
Thus, users only need to be concerned with function and clas-

ASSTI <(n+& +5)p+rnaxlAT, 1 +0(P), sification specifications. A distinction is made between a
SST - category attribute and a data (or summary) attribute. Turner

where T, is the sum of squares for the i-th treatment group, et. al. have described category attributes as those with small
and k is the number of groups. For two-way classification, domain sizes and so with great ability to identify. By Steven's
only SST and SSE are proportional to oc. For higher order typology [331, these correspond to those scales that are at most
classifications, error bounds are similar. For Latin square and ordinate (qualitative). We use the term here to include all
factorial designs the errors are proportional to 0

.

Errors in multivariate analyses are more complicated to COMMERCIAL STATISTICAL
analyze, But the errors are related since the computations start
with a matrix of Pearson's correlation matrix, P. For linear user views user statist- User

regresssion, the problem is thus, PtX.B. P is symmetric (and cal functions
positive definite?). It has been shown 134] that, and classif-

ications

II xII II P1 base tables statistical Conce-

if P is perturbed. II I I is the norm (i.e., a measure of magi- parameters and ptual
tude) of the matrix X. Since AP and P are symmetric, the base elassifi-
relative error is A.A,,,/At, where the As are respectively, the cations - -

minimum cigenvalue for P, the maximum and minimum eigen-
values for AP. Ilowcver, it is desirable to express the error physical data stored stati- Physi-
bound in terms of P, and x. The errors for factor and discrim- stical param- cal
inant analyses are similarly bound. cters and

classifications

4.4. Error Summary
Fig. I. The Model

The relatike errors are proportional to P01 in most cases and
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those attributes that are inherently qualitative or have been A classification system CS, roughly, is conceptually a collec-
coded to become so - by grouping, for example. Data attri- tion of categories and their parameters. A formal model is dis-
bulcs on the other hand, have no restrictions although in most cussed elsewhere [24, 25]. In an enterprise, many CSs exist at
cases, they are at least ordinal (quantitative). this level, and arc chosen to meet the demands of the enter-

prise. The category and data attribute sets in a CS will be
The DDL, the data definition language, should include con- chosen according to the 'target functions' - target functions,
structs that allow users to make these SPECifications. Rightly, being those functions that share common parameters. lHene,
the indirectly SPECified data objects are the categories and for example, one CS may suffice for all functions related to
their associated parameters. Similarly, the DML, the data counts such as frequency, contingency tables, etc. Another CS
manipulation language, provides users the ability to REQuest defined on a data attribute set may exist for multivariate ana- -
the values of previously specified functions, as well as the lytic functions. The actual number of CSs at this level for an
ability to CANccl any previous specifications. For example: enterprise will depend on the number of target functions and

SPEC mean, stddev: SALARY by SEX the number or data attribute sets.
SPEC cntgncy: SALARY by SEX and RACE Processing at this level will include: the retrieval of parame-
RtEQ mean: SALARY by SEX ters; derivabitity tests [241 for categories; the addition and
CAN cntgncy: SALARY by SEX and RACE deletion of categories. Retrieval of parameters will be in

The first SPEC states that a user wants the mean and standard response to user REQuests. A user SPECification always
deviation of the SALARY for each of the categories, male implies a derivability test for each of the category in the
and female. The second SPEC is for a 2-dimensional con- SPECification. Categories that are not derivable are added to
tingency table for SALARY. This approach of 'SPECify- the classification and their initial parameters calculated from .
before-use' is justified in the sense that statisticians in an the database - may be, with the permission of the DRA. It
enterprise generally know what analyses are of interest, par- should be noted that the category attribute set of a user may
ticularly, after an 'explorative' phase has been undertaken [2]. be a subset of the category attribute set at the conceptual
Market research enterprises usually have well defined stable level. In this case, the unspecified attributes are aggregated
analytic sets that only change periodically. Also, in the case of over [7, 32). For example, if a user specifies the category
experimental situations, the factors (category attributes) of 'hispanic', this will become 'hispanic&(fcmale, male)' at the
interest, the dependent variables (data attributes) as well as conceptual level if the category attribute set is (RACE, SEX]
the type of analyses are well defined. REQ is an actual at this level. Categories arc removed in response to user CAN-
REQuest for the calculation of the mean salaries for males cellations when necessary. F.
and females. CAN is a CANcellation of a previous contigency
table SPECification. Both REQ and CAN are part of the
DML. It should be noted that these are not exhaustive. 5.4. Physical Level

The physical level is concerned with the actual storage of the
5.3. Conceptual Leiel base classifications and the parameters associated with the

categories. Efficient storage and retrieval structures will be
With a knowledge of all specified functions, the DBMS can needed.
easily determine the necessary parameters to realize them.
Since these parameters are updatable, they can be kept
current during data acquisition. It has been suggested [31) that 5.5. Interfaces and Mappings-
statistical databases are stable in the sense that after the initial
data entry and correction, there are few or no updates to the The arrows in Fig. I show where the interfaces exist. Besides
database. While this is true for pure 'statistical data' like the two regular interfaces between the three levels, there are
census data, it is not necessarily true for general commercial two horizontal interfaces. The DBMS has to provide the map-
systems. There is no doubt that too many parameters and fre- pings between the user/conceptual and conceptual/physical
qucnt updates are bound to slow down data acquisition. How- interfaces of the statistical subsystem. The former will include
ever, there arc applications in which updates are infrequent. mappings from functions to parameters and from user classifi-
Additionally. there are those in which updates come in cations to base classifications (i.e., the way they are derived).
batches - market surveys, for instance 120]. In this case, The latter interface includes mappings to actual physical
straightforward methods of calculating these parameters can storage. The horizontal mapping at the user level exists
be applied to a new batch and these parameters added to because classifications are defined on user category attributes
those of the original database when the new batch is merged, and the functions, on user data attributes that are part of a

user view. The same explanation holds for the horizontal map-
Base classifications - a set of categories - are kept at this level ping at the conceptual level except that additionally, the con-
to exploit the additivity of the parameters. From the base clas- ceptual statistical component may have to make requests
sifications, the DBMS can determine if newly specified directly on the base tables - for instance, when the parameters
categories are derivable, thus eliminating redundancies arising of an underivable category are to be initially accumulated. No
from user classifications. Redundancies arising from different horizontal interface exists at the physical level, implying the
users can also be eliminated if a base classification is not independence of the two subsystems at this level. A conse-
redundant. Unfortunately, deriving such a base classification quence of this, is that it is possible to answer some statistical
is a difficult problem. Also, to determine if a new category is queries without the presence of the physical database. This is
derivable from a given set of categories has been proved to be not to say that the two physical subsystems cannot reside in
N P-complete [24). Thus, it seems that instead of a base classif- the same physical device - the independence is logical.
ication that is sound and complete with respect to user classif-
ications, a classification that is complete but not necessarily
sound (if easy to compute), will be desirable. It should be 6. Conclusion
noted that if user categories are disjoint, then the derivation

of the base classification and derivability become polynomially A CS captures the essence of statistical queries. By represent-
computable. ing different user classifications by a base classification, data

sharing is possible. In addition, redundant calculations arising
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from different function calculations and different users have model, components of a CS correspond directly to one rela-
been reduced. Response time for statistical queries will also tion and its instance.
be reduced since the intermediate result (parameter) acquisi- IF
tion phase, that involves database scans, has been eliminated. In any database model, the classification system can be
A CS may also be used to model time - time, being a category expanded to include many table schemes - record types or ? ,
attribute, relations. Thus, a category attribute set may span more than

one table (so may the data attribute set). It is then necessary
The system can be partially implemented. For instance, a sys- to give meaning to this expanded CS in the context of the par- 0'.
ten can be implemented without a sophisticated derivability ticular database model - in particular, with regard to the data P%-r
capability. This may be the case when it is known that all manipulation operators or the database model. In the case of
categories are always disjoint - this was the case in an imple- the relational model, to determine the categories whose
mented system. The updating capability at a per record basis parameters are to be updated, given that an insertion has

* may be substituted with a higher level merge procedure that occured in a relation containing part of the category attribute
uses the direct methods for calculating the parameters, and set, is not an easy problem. This problem is directly related to
the additive formulas for the merge. It has also been demon- the general problem of updates in a relational system [13, 14.,
strated that good algorithms exist - in particular, when Updates aside, the initial gathering of parameter values needs
category attribute domains are small or ordered, proper descriptions of procedures that are not immediately

obvious.
A CS does not come without a cost. Additional rounding
errors are incurred when updating formulas are used in calcu- Efficient implementation data structures are needed. In a sys-
lating parameter values. However, better accuracy can be tem that has already been implemented, an array linearization
achieved if the parameters are kept in twice the precision of scheme was used and since the categories were disjoint
the final function values. As pointed out, downdating results derivation was easy to implement. However, a more sophisti-
in even increased error [35]. Fortunately, many attribute cated data structure will be required for the more general case
domains are of the same sign and if high accuracy is desired, of non-disjoint categories.
separate parameters (but same type) can be accumulated for
deleted records of the database. Then at function-compute
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COMPUTER IMPLEMENTATION OF MATRIX DERIVATIVES IN OPTIMIZATION PROBLEMS IN STATISTICS

K. G. Jinadasa and D. S. Tracy "'S

University of Windsor
Windsor, Ontario, Canada

The usual multivariate estimation problems reduce to optimization problems '

involving parameter matrices, which may be patterned due to constraints or for
reasons of identifiability. Matrix derivatives, where allowance is made for patterns
in the argument matrix, are suggested, and permuted identity matrices are extended to

cover partitioned matrices. Applications are made to parameter estimation of a
factor analysis model. Subroutines are studied for computer implementation.

1. INTRODUCTION matrix derivative of Y with respect to matrix "
X."..:

Often the estimation problems in multi- "-%j

variate statistics are optimization problems When the elements of X have equality or

involving several parameters in the form of other relationships between them, or some ele-
matrices, which may be partitioned into blocks. ments are constants, the matrix is said to be
Sometimes the matrices involved are patterned patterned. Examples are symmetric or skew-
matrices, as in covariance structure models, symmetric matrices. This requires a modifica-
where conditions are imposed on the parameter tion of the definition of a matrix derivative.
matrices for the model to be identifiable. We Here we take the k independent and variable
propose a method to obtain matrix derivatives elements of X and define a one to one func-
of a matrix function of matrix arguments, where tion J on Rk onto the set of all matrices
the argument matrix may be patterned. We also D with this partcuar pattern. We take the

extend the notion of permuted identity matrices extension f(X) of the function f(X) to the
to matrices with row blocks or column blocks, whole space of all mxn matrices by ignoring

in order to take care of partitioned matrices, the pattern of X. For any X in D, we have

i(X) = f(X), and a corresponding vector x in
We apply some of these notions to the con- k

firmatory inter-battery factor analysis model, such that J(x) f X. Now consider the com-
where we obtain the generali'ed least squares posite function G(x) = fJ(x). Since J(x) =

estimators of the parameter matrices. Some XED, we have G(x) = f(X). Thus we can define r

subroutines are suggested for computer imple- the derivative of G(x) by using the chain rule

mentation of the method. The method is appli- G'(x) = ?'(J(x))(J'(x))

cable to other problems where the objective where '(J(x)) is the derivative of ? at the

function is a function of matrices, which are point J(x). By taking the matrix representa-

possibly patterned due to constraints among tion of G'(x), we get

the elements. [G'(x)] = ['(i(x))IIJ'(x)].
Here [f'(J(x))] is nothing but the matrix

2. MATRIX DERIVATIVES derivative obtained by ignoring the pattern of
X. Thus the procedure amounts simply to post-

Let Y = f(X) be a matrix function of a multiplication of the matrix derivative,

matrix argument X, where X is mxn and Y obtained upon ignoring the pattern, by another

Is pxq. Then vec X denotes the column vec- matrix, which is related to the pattern of X.

tor of order mn formed by stacking the
columns of X, one above the other, starting Fo x2a p, let X x-) s
with the first column. Matrix Y is similarly For example, let X = xsy-
"vectorized" to vec Y, and displayed as a row 2 2

vector vec'Y. If a typical element of vec'Y metric, and Y = f(X) = lXi = x2 2 -x 2 1 . Igno-
is y and( that of vec X is xjj. then the ring tile pattern of X, a well known result Is

collection can be represented by a 3vec Y IX' vec'(X-1  x 2\axij/  vee X x22...

Dvec Y 1 x'-.pqxmn matrix .ve Thsbcoe repre- - 2 1 ) = 2l) .~vec This becomes a define J(x) = X, i.e.,

sentation of the derivative of the function \x 2 2  ( x21 x22)'
with respect to the usual bases in the X
space and the Y space, and Is known as the

4.



L x J 1 0 avec x n'

o 1 Interchanging the'roles of a and n, we ob-

x22 -x21 tain Tr Then Tr Ta - I
vec,-x2 - ( - -x 1). The ru" nT hn Tn

(_X21 21
required derivative is then Let E be an mxn matrix, partitioned

into ri blocks, E- (EJJ) where Eij is

(x -X 1) 0j 1) (-222 -x21 -x21 1 0/. maXn 5 m = El I , nm E n. We let Rvec

denote the formation of vectors of blocks in
3. PERMUTED IDENTITY MATRICES the row order and Cvec in the column order.

-, Thus
These were introduced in the litexature to Rvec E - (vec'ElVec'El2,.. .,vec'Els,

permute the rows of an identity matrix, and vec'E vec' E)
were used to relate vec A and vec A'. We 21" r

extend these with the purpose of relating the Cvec E = (vec'E vec'E .... vec

vector of a partitioned matrix and the vectors 11 e 2 1 ' ',rl'

of the blocks. vec'E12  ..,vec'Ir)'.

Consider the partitions of positive inte- We then find relationships like
an

r s T vec E - Rvec E
gers m,n as m - E a, and n - E n . Then r

i1 J1 vec _ - Rvec
the identity matrix of order mn may be

written as T
s 
Tanvec E - Cvec E= imI  n r

In block diag(I , I ...,Im ,

p. 1 r or T vec E Cvec .
mn,r

1 2
.... ... I )

"  
Some results on ® products [5],

a1  r A @ B - [(AijGBk )], where 0 denotes

We denote by Tmn the matrix obtained by Kronecker product of blocks AIj and Bk W
r can be related. If A Is mxn and B is

rearranging the row blocks of the above matrix t u n d i

th pxq, p EIp q - E q., we have
by taking every r block starting with the k k'

thk 21""
first block, then every r block starting with T p=(BSA) - (BoA)T'
the second block, and so on. Interchanging the pr nq,s -

th
roles of a and n and taking every a block, Tt (B@A)T

nq '
s = B()A

we obtain the matrix Tnm. np,r q

If X,Y are random vectors with m,n

Next we partition I as components respectively and E(X) - V, ... '
I E(Y) - V, Cov(Y,X') - E, then E(XyrY) =

an 
8
m m 2 a Tr
1 , 2 T

r  
vec E + V@® and for X,Y independent,

n n Cov(XX') - I ( 1 )  Cov(YY') - 1(2 ,

.... ... I.m E(XY'®XY') - [T r vec E(1) + 1®ia]
r r aM, r

• s Z(2)
nth (Ts vec 2+ V@V

Rearranging the row blocks by taking every n 
.','-(2

block starting with the first, we get Tn, and Cov(XEY, (X Y)) () + vi') (E) +

n
interchanging the roles of a and n, we obtain vv) - pn'®v'"

Tnm. Then we have the relationships 4. A FACTOR ANALYSIS MODEL
mn anns nam T
n 
T
m n 

- I ,Tn Tn
= 
I.

r n mn I T5  mn We consider the application of the above

ideas in the problem of estimation of para-
Now consider the partition meters for the confirmatory interbattery

I = block diag(Il ,...,Im ,Im , factor analysis model 131. Here one has two
an an an. an,

11 21 sets of scores x, and x2  of two batteries

'2n"''m n
)  

of tests which have a common factor z. Let

% S.
0 
9

.4&

S * ~ *~~ ~ . * . *~.............................
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andayd denote the factors specific to of the generalized least squares method, is

batteries 1 and 2, and e1,e 2  are the error f(E) tr(SE 1l l2

terms. The model is formulated as 2jrU-)

- +A~z+ y +e 1 where S is the sample variance covarianceII matri. We can write this asi

x2 = 2 + A 2z + r 2y2 + e 2  f(E) - jvec'(S-E)(S 
1

xS)vec(S-E).

-1
where pil'J2 are the two battery means and Since S is positive definite, so also is

AA 2 ' rn 2  are the corresponding factor a- o . Denoting its symmetric square root "

(xi y y1 by UI ,we have
dinga. Further, with x are h f(E) r[(S 0) vec(S-)

e, Tit is assumed that z 
-

N(O,'), h(Z))' h(E) L
matr~x We -a wr,2e andas %

N(0,0 , et 2 2 , d where h(E) = 0 vec(S-E).

Cov(y,z') 0, Cov(z,a') -0, Cov(y,e') =0,

0, Cov(e 1,e;) - 0. Also, y and Letting 6 denote the vector of all the
12 ~ylY2unspecified distinct parameters involved in the

whare assumed to be diagonal matrices and Sn, model, the gradient of f(e) is A-

1 and 0 are symmetric matrices. The [-A•en g tse r

1 2, ,f = I UJ()]hE

variance covariance matrix Cov(x,x') of the B
model becomes where

d g F t 11 +Ax2 A2  JA(E) -ae ( -0U vec(S-Z) ) -

Ei

2 '+ 2a ( e() ".::.vec
ae D

/Z E Thus,
22 2) 

f(Z) _ - U et 0) vec(S-E)

avec E -l -
4 ~~In order that the model be identifiable,_ vc(-.

one has to specify some of the elements in theus i t ca at e oe n he
matrices involved. If n is kxk, 0 isg a t o o ds n
1 ad 2  as e 2 to obtain 0f explicitly. While considering
1XI 1 2 is Z2x Z2 ' then we have to impose k avecE
conditions on AA end t, conditions on we find that because of the pattern of

2 E, finding the derivatives of its submatrices
*r, and 01 and 2 conditions on r 2and 0 2' is much simpler. Let vs A denote the vectorSof unspecified parameters involved in a sub-

In confirmatory factor analysis, one may wish to avec E
impose conditions on factor loadings, instead of marx AIf Z
on the covariance matrices of the factors. mt2Clearly 1 is easier

Thus, besides the symmetry of 4, T and 0

no other patterns are imposed. However, to calculate than BveA , i.e., it is easier

21and r, become patterned matrices. aRvecE BCvecE

to in - or - . Using permutedOne can use suitable identity matrices as sub- to fidDe
matrices of the above matrices, so that the
required number of specifications is met. For identity matrices, ae T "ee re
example, we can have I as a submatrix of a Tw

and A I as a subsatrix of r, and I T is n p I p1 + Pcacua p being the num- I".
as a s x 2

, 
then we haver of tests in the first and the second

o 2  battery. The gradient of the objective of

function is
For the estimation of the unspecified para-

meters in the model, either the maximum likeli- V*
hood or the generalized least squares method is f -oe arame T Sin S-l vec(S-E). .'
generally used. The objective function, which
is a function of E, to be minimized in the case Clearly, closed form estimates are notOne~ ~ ~ ~~~~~~~~~~_ can us sutal idniymtie sb ofn Rec E Cvc

-po O Usn emte---:

matrces f th abve mtrics, s tht th veE Rec..-.

requrednumbr o speifiatios i met Fo idntit marice, T , here,-...A
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available forths problem, and one has to use U ;vec E U T pp  Rvec

5. COMPUTER IMPLEMENTATION and then

)3Rveec (- S1) Rve

In most of the optimization routines in A(E) JA(E) - 3ROc T'Sl CS0) 3Re

"practice, the user has to provide the function ( e3
.and the gradient of the function. In the above D ec

example, it is easy to program the matrices T In our problem Ee i n8x2mti

and 3Rvec . The latter is a partitioned with 36 blocks, out of which only 16 are non-o zero blocks. At each step of iteration, .

matrix with 36 blocks, only 16 of which are At e
non-zero blocks. Thus, corresponding to EIII A - A )I J,-l afmE
the non-zero blocks are A) ( O

IA is to be calculated and 8 is updated by ..
(qI. + )( 1 'D X IPCi )j , A,~L

1
)91J i IIf(E) I

Ol'l 0+A until j 8  becomes sufficiently

01 small. This method was not possible because

.II (1 1I)J I and[JA(E) became singular at certain

.. s t a g e s .

* I and so on. The J matrices are the
J , nd o o. Te J atrcesaretheThus Marquardt-Levenberg algorithm was v"-

matrices corresponding to the patterns of the Tth
parameter matrices indicated, used, where the updating procedure at the kth

The implementation of matrix derivatives step is to calculate

* in a computer program amounts to finding the J1 af-E-

products of matrices as above. This requires A 
=
- +JA() + a

writing subroutines to find the products of "
matrices, whereas element by element differen- where {u I is a bounded sequence of positive

"1 tiation would have become very cumbersome. k
Gauss-Newton methods are popular in optimization integers. The convergence became very slow.
problems of factor analysis [11,14]. At the last step we used the subroutine

ACDPAC [21, providing the subroutines to cal-

Usual optimization routines consider gene- culate f(E) and 'f(). We had to make
ral problems with constraints among the Do

, variables. In this problem, we have taken care slight modifications in the subroutine to
-' of the constraints in the patterns of the res- handle the case of zero constraints. We find

pective matrices. Thus the routine employed an almost perfect fit.
should allow the possibility of zero constraints.
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SUBROUTINE JDIAG(IPPIPPJDIG) "
SUBROUTINE JSYMET(KrM,NJO) C THIS SUBROUTINE FINDS THE

C C J MATRIX CORRESPONDING TO
C THIS SUBROUTINE FINDS THE C A DIAGONAL MATRIX.
C J MATRIX CORRE§PONDING TO C
C ANY SYMMETRIC PATTERN MATRIX. C IP=ORDER OF THE GIVEN MATRIX
C C IPP-IP**2
C K=THE ORDER OF THE MATRIX C
C M=K**2 INTEGER JDIG(IPPIP) 5.
C N=K*(K+1)/2 DO 10 I=,IFPP
C DO 10 J=I,IP

INTEGER JO(Mr) ,JDIG(I ,J)=O -"
DO 30 I=1,M 10 CONTINUE
DO 30 J=IN DO 20 I=IIP
JO(IJ)-O JDI((I-I)*(IP+I)+IJ)=I *

30 CONTINUE 20 CONTINUE
L-0 RETURN

KI=K-I END
DO 100 I=IK1 C
L=L+1 C
JO((I-1)*(K+I)+lIL)=I SUBROUTINE TMATRX(MN,MVIRMNID)
KI=K-I C

DO 100 J=I,KI C THIS SUBROUTINE FINDS THE
L=L+I C Tmr,,n MATRIX.
JO((I-1)*(K+1)+J+lL)=l C M AND N ARE GIVEN NUMBERS
JO((I-1)*(K+I)+K+J+IL)=I C PARTITIONED AS

10 CONTINUE C M=M(1)4M(2)+ .........+M(IR) AND
JO(MN)-I C N=N(1)IN(2)+.....,..+N(IS)
RETURN C MV IS THE VECTOR OF DIMENSION
END C 'IR' CONTAINING THE

C C ELEMENTS OF THE PARTITION OF M.
C C MN=M*N

SUBROUTINE JTOW(IPLLPMLIPLJTW) C
C THIS SUBROUTINE FINDS THE INTEGER TMN(MNMN),MV(IR)
C J MATRIX CORRESPONDING TO INTEGER ID(MN,MN)
C THE MATRICES OF THE FORM (IB)' DO 100 I=IMN
C WHERE I IS THE UNIT MATRIX. DO 200 J=IMN

*C ID(ItJ)=0
C THE GIVEN MATRIX IS OF ORDER (IPL) 20 CONTINUE
C THE UNIT MATRIX IS OF ORDER L. ID(I,I)=I
C LPML=L*(IP-L) 10 CONTINUE
C IPL=IP*L DO 300 L=IMN

* C DO 300 I=1,N
INTEGER JTW(IPLLPKL) MM=O
DO 15 I=IIPL DO 300 K=IIR
DO 15 J=ILPML DO 400 J=IMV(K)
JTW(I,J)=O TMN(M*(I-i)+MM+JL)-ID(MM*N+

15 CONTINUE I (I-1)*MV(K)+JL) -
IPML-IP-L 40 CONTINUE

DO 25 K=lL MM=MM+MV(K)
[10 25 J=IIPML 30 CONTINUE

JFW((K-1)*IP+L+J,(K-1)*IPML+J)=I RETURN
25 CONTINUE END

RETURN
END

C
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AUTOMATIC COMPUTATION OF FIRST AND SECOND DERIVATIVES
WITH APPLICATION TO COMPARTMENTAL MODELS

David E. Gray and David M. Allen

Department of Statistics
University of Kentucky

Lexington, Kentucky 40506

A method for obtaining computer generated analytic first and second derivatives is
presented. These derivatives are used in the fitting of nonlinear models defined by
systems of linear differential equations. Second derivative information offers the
possibilities of improved convergence and calculation of curvature measures of non-
linearity. The method is illustrated with a C program.

Compartmental models are an important class of and decreases K2X2 (t)At. The concentration of
mathematical models. They are used in many
fields, but a pharmaceutical example will illus- the drug in Compartment 1 is observed by taking
trate their characteristics. Suppose D amount blood samples at time t. Statistically we
of drug is introduced into the blood stream. assume the observed concentration has the fol-

The drug travels to its site of action, returns lowing structure
to the blood stream and is eliminated. Pictor- X +
ally this can be shown as follows C =t--+

where V is the volume of distribution and et is

a random variable, usually assumed to be N(O,o).K 2 The more general model of Carroll and Ruppert
(1984) can also be applied with the obvious
changes. Since X1 (t) is a nonlinear function of

Ke t and K = (V,K ,K2,K ), a nonlinear least
X1 t) represents the amount ot drug in the 21e

squares method is used to estimate K. To do
blood (Compartment 1) at time t and X2 (t) repre- this, X1 and its derivatives with respect to K

sents the amount of drug at the site of action are required. X1 in turn requires solving (1).
(Compartment 2) at time t. The K's are called Both finding X and differentiating X with
the rate constants. Letting X1 = Xl(t) and 1 1

respect to K is tedious and subject to a highX2 =X2(t), we can write probability-of error. Various approximate
dX_ methods for solving X1 and estimating dX/dK
-a Y (K1+Ke)X 1 + K2X2  exist. We will present a method which solves

(1), finds dX/dK and, in fact, finds partial
= 2 derivatives of any order. This method was in-
K.dt K I X2  K2X2  spired by Jennrich Bright (1976). This paper

or more succinctly, presents a somewhat different approach that doesor morsccictnot require distinct eigenvalues and gives
= AX (1) second derivatives as well as first derivatives.

where We will also describe some applications of ..

second derivatives and give some details of the
F(KI+Ke) K method of implementation in the C progranmming2 language.

1 2J We must solve

X (X t) = AX, A is cxc
2(t) for X. We will assume the characteristic roots

of A are all real but they need not be distinct.
A d x  Herron (1963) shows that this condition will

hold for all small practical problems. A

Loosely speaking, this says that in the inter- numerically stable method for solving (1) is to
val (tt+At), At small, X1 decreases (Ki+Ke) first find the real Schur decomposition of A,

X1(t)At and increases K2X2(t)At. Similarly, A = QTQ'

in the same interval, X2 increases KIXi(t)At where T is an upper triangular matrix and Q is

-4.



an orthogonal matrix. The diagonal elements of system for aX/aK has the form
T will be the eigen values of A. Then, maxdeg

Q9= QAX I Cde(xt).7
= QAQ'QX d=O
= Tu Second derivatives are found analogously. To

where u = QX. find X/3KiaK differentiate (3) with respect

The cth element of u satisfies the equation to KK

Uc =AcUc A = T i (i=l, ..,c). d. x )=A -+A a x
c c' i Ft K i a aK Ki  rK i K,

this is easily solved for u and likewise the K K
rest of (1) can be solved by substituting the = AizCdet t)+A J lce(dt)+ABKK
solutions for ui that have already been solved 1.j' A

and integrating the resulting equation. = K +A JC)e(t)+ A- X

It may arise that two or more eigen values will Multiplying by Q,
be equal. In that case a power of t will enter M
in the solution. The general solution can be d au Ki d Kj d
represented as Tt TI =KQ IA C AC.

maxdegd
m Bde(Xt) Allen's result holds and the solution is of the
d=O form

where e(xt)T = (e(XIt),e(X2 t)..-.,e(xct)). D Dje(xt).

For each power of t there is a Bd , d=O,..-,maxdeg. Clearly higher derivatives are possible but the
The set of Bd can be considered as a three dimen- expressions are correspondingly more complica-
sional matrix and will be referred to as B, the ted.
solution matrix for X.

The determination of when the eigenvalues are
The partial derivatives of X with respect to K equal is potentially the hardest part of making
are actually not hard to get. Taking the partial the method work. We can tell when two roots
derivative of the system with respect to an ele- are within machine epsilon of one another, but -. . "
ment of K, say Ki,  this may not be the criteria we want. For

a dstatistical purposes, we may deem two eigen-
dX = ' (AX) (2) values equal long before a numerical analyst

aKi dt aK1  would. The analogy In the linear regression r.
= A)X + A case is that the X matrix may be nonsigular
3K i  with respect to machine precision but the con-1KI a fidence intervals for the parameters are so

KA X + A- large as to be useless.
Ki

A.I is ±1 if A has iK in it. If the order of We haven't determined a satisfactory criteria
i t i t yet. In the C subroutine we present, we side-
integration of the right hand side of (2) is step this by introducing a function cmplam.
changed This function returns 1 if the eigenvalues are

d Ki ax determined to be equal whatever criteria we are
dR - A X + 3Ki  currently using and 0 if not equal.

This is a system of differential equations to be It should be noted that the eigenvectors of A ,
solved for aX/RK i. Since we already know X, we are not found. In the presence of equal or near

1 equal eigenvalues , this can be an unstable
can rewrite (3) as calculation. Also, the Schur decomposition of

Ki A is only done once per iteration to calculate
d 3X A d + aX all orders of partial derivatives.
d-= 3K A)+aK

Premultiplying the above by Q APPLICATIONS

dJt = AKi Bde(At) + QA(X Second derivative information is useful for many

K I problems. We will briefly describe two of them.

= A e(Xt) + QAQQQAaK = d tThe classical Gauss method of function minimiza-
K d tion requires the second derivative matrix of

= QA"B e(Xt) + T-ui '  the objective function. The objective function
aK i, in our case is the residual sum of squares.

Allen (1981) showed that the solution of this It's second derivative matrix is

.....*.-.. .



+ r'r] For a problem with 3 compartments and 5 para- * ~ i

where meters, the total storage for all the solution
would be around 20K bytes assuming 8 byte reals.

r a y -A few years ago this might be one half to one
third of all the storage available to a typical

= -L, n x p microcomputer. For today's and future micro-
?K computers, this is really an insignificant
a2r amount of storage so we don't try to manage it

?K - K is nxpxp. as efficiently as we could.

The bracket notation is adopted from Bates and
Watts [g80] where it means to sum over the sam- C is a fast and flexible language. The lack of

ple space index, type checking has good and bad effects. Theability to manipulate pointers allows great '

We may not want to perform the Gauss step at freedom but can also produce obscure bugs. How-
every iteration but perhaps every pth step as a ever, assembly language programmers have lived
restart for the Gauss Newton. It could also be without benefits of any protections since the
invoked based on the basis of convergence cr1- beginnings of computers.
teria or line search failure. The programs we have written are also portable.

Another use of second derivative information are By being compatible with UNIX*, C compilers are
the nonlinearity measures of Bates and Watts. also compatible with each other. We have
The coordinates of the second derivative matrix transferred C code written for a Motorola 68000

are calculated relative to an orthogonal basis processor to a VAX running 4.2BSD UNIX and have

of the tangent plane. These coordinates are compiled and executed without change.
used to construct the nonlinearity measures and
are useful in themselves in understanding the To improve the efficiency of a computation in-
nature of the nonlinearity in the problem. To tensive program like this one, significant
calculate these coordinates, the second deriva- portions should be written in assembly language.

tive only has to be formed after the Gauss Newton Languages with claimed small overhead over
method has converged, assembly language achieve that small overhead

only when the assembly language programmer must

IMPLEMENTATION play by the same rules as the compiler. Given
complete freedom, the assembly written program - -

The preceeding method is only a part of a larger will usually be much faster than that written
program for estimating K. We need some way of in a higher level language. Unfortunately, the

keeping track of the soTution matrices. For a code is not as portable.

problem with c compartments and p rate constants, T l g u v t e
1 solution matrix is required for the system, The following subroutine solves the system of .
p for the partial derivatives and p(p+l)/2 for differential equations. If nullb is 1 then

the second derivatives. One way to keep track system (1) will be solved; else system (3) will

of these matrices is to keep track of their be solved.
addresses. In the programming language C we can solvesys(ab,cx0, lam,nc,deg,nullb)
define an array of pointers. For example, for
second order partials we can define REAl. aEMAXNC)[MAXNC],

double * D[i][j]. b[MAXDEG] MAXNC31MAXNC],
cMAXDEG] MAXNCJ MAXNC].

This declares D to be a two dimensional array of REAL xOrMAXNC, larmnMAXNC]!
pointers to double. A double is a single preci- int nullb, nc, *deg;
sion real in C. We could have defined 0 to be
an array of pointers t9 char or int or anything int i,p,d,r,,g,tmd.
since pointers almost always have the same length REAL temp, fact, powk, lamdifg
even if the things they point to don't. The
address of the (i,j) solution matrix is assigned for (p-nc-1p)=S;p--)
to D[i][J]. Referencing the (ij) element of D
is the same as referencing the ij solution. if ((p-=nc-1)&&(nullb))

{

We could predefine all the matrices we might at c[EJO p1tp3x0tp"
compile time and then assign those addresses to continue;
the pointer arrays. Or we can allocate matrices ) -
as we need them. There are C library functions tmd- *deg;
for demand allocation of storage, but they only for(k=GOk(nc;k++)
return a block of memory, not any specific type {
such as an array. One must then make this for(d=O;d(=tmd;d++)
memory area look like a known type to the com- :, ,
piler. For arrays this requires setting up dope
vectors containing the right information to simu-
late a compiler generated array. *UNIX is a trademark of AT&T.

*..*.,
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t emap=. 0;1

forCg-p+ ; g (nc; g++)
temnp +- a1p3tg3*c~d3tu)(k3;

if (Inullb) terp+=b~d3tp3[k3;
if (terp-0.0) coninrue;
laradif~larni~k3-larafp3
if (cmplara(lari, k, p)

ctd+1Jlp)(kl += temnp/(d+l);

I

powk 1 amndxfj

for 0-0; v, (=d vr++)

if 0r-0) ctd-r3Cp3k3 += terip/powk;

e 1lse

powk *=lamndif;
fact *(d-t,+ )
eCd-rJ (fri k)+=(fact*tenp) /pc~wk;

if (nulib) c[O)(p)Ep) - xO~pJ;

if Ci -P) cfO]LpI1p]--c(03fpItiJ1
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